1.数学类比推理的运用
类比是常见而重要的一种数学思想方法,它是指在新事物与已知事物之间的某些方面作类似的比较,把已经获得的知识、方法、理论迁移到新事物中,从而解决新问题。
类比不仅是一种富有创造性的方法,而且更能体现数学的美感。(一)不同知识点之间的类比数学中的不同知识点在教材中是相对分散的,知识点之间的联系需要教师通过自己的数学设计展示给学生,从而使得学生的概念图网络更加丰富和结构化。
它不仅可以在知识复习中使用,也可以在新知识的学习中进行。1、立体几何中的类比推理【例1】若从点O所作的两条射线OM、ON上分别有点M1、M2与点N1、N 2,则三角形面积之比为: 若从点O所作的不在同一个平面内的三条射线OP、OQ和OR上分别有点P1、P2与点Q1、Q2和R1、R2,则类似的结论为: 。
【分析】在平面中是两三角形的面积之比,凭直觉可猜想在空间应是体积之比,故猜想 (证明略) 评注 本题主要考查由平面到空间的类比。要求考生由平面上三角形面积比的结论类比得出空间三棱锥体积比的相应结论。
【例2】在 中有余弦定理: 拓展到空间,类比三角形的余弦定理,写出斜三棱柱 的3个侧面面积与其中两个侧面所成二面角之间的关系式,并予以证明。 【分析】根据类比猜想得出 其中 为侧面为 与 所成的二面角的平面角。
证明:作斜三棱柱 的直截面DEF,则 为面 与面 所成角,在 中有余弦定理: ,同乘以 ,得 即 评注 本题考查由平面三角形的余弦定理到空间斜三角柱的拓展推广,因为类比是数学发现的重要源泉,因此平时的教学与复习中更要注意类比等思想方法的学习。【例3】 在平面几何中有“正三角形内任一点到三边的距离之和为定值”,那么在立体几何中有什么结论呢?解析 “正三角形”类比到空间“正四面体”,“任一点到三边距离之和”类比到空间为“任一点到四个面的距离之和”,于是猜想的结论为:正四面体内任一点到其各面距离之和为定值。
如图1,设边长为 的正三角形 内任一点 到其三边的距离分别为 、、,将 分割成三个小三角形 ,则有 ,即距离之和为正三形的高(定值)。类似地,如图2,设棱长为 的正四面体 内任一点 到四个面的距离分别为 、、、,将正四面体分割成以 为顶点,以四个面为底面的小三棱锥,则有 ,于是 。
所以 为定值。【例4】 在平面几何中,有勾股定理:设 的两边 、互相垂直,则 。
拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可得出的正确结论是:“设三棱锥 的三个侧面 、、两两互相垂直,则 。”答案为 。
类比不仅可以提供探求新背景下结论的思路,而且也为寻求结论的证明提供方法上的指导。将平面图形中的三角形与立体图形中的多面体进行类比,使不同数学分支之间的知识得到了巧妙的沟通,也使解题过程得到美化,让人有意犹未尽却又顺理成章的感觉。
2、解析几何中的类比推理 【例5】已知两个圆: ① 与 ②,则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆的情况下加以推广,既要求得到一个更一般的命题,而已知命题要成为所推广命题的一个特例,推广的命题为 。 【分析】将题设中所给出的特殊方程①、②推广归纳到一般情况: 设圆的方程为 ③与 ④,其中 或 ,则由③式减去④式可得两圆的对称轴方程。
评注 本题通过类比推广,可以由特殊型命题直接归纳概括出一般型命题。3、数列中的类比推理【例6】定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列 ,是等和数列,且 ,公和为5,那么 的值为 ,这个数列的前n项和 的计算公式为 。【分析】由等和数列的定义,易知 故 当n为偶数时, ;当n为奇数时, 评注 本题以“等和数列”为载体,解决本题的关键是课本中所学的等差数列的有关知识及其数学活动的经验,本题还考查分类讨论的数学思想方法。
4、函数中的类比推理【例7】设函数 ,利用课本中推导等差数列前n项和公式的方法,可求得 的值 。【分析】此题得用类比课本中推导等差数列前n项和公式的倒序相加法,观察每一个因式的特点,尝试着计算 ∵ ∴ 发现 正好是一个定值,∴ ,∴ 评注 此题依据大纲和课本,在常见中求新意,在平凡中见奇巧,将分析和解决问题的能力的老本放在了突出的位置。
本题通过弱化或强化条件与结论,揭示出它与某类问题的联系与区别并变更出新的命题。这样,通过从课本出发,无论是对内容的发散,还是对解题思维的深入,都能收到固本拓新之用,收到“秀枝一株,嫁接成林”之效,从而有效于发展学生创新的思维。
5、排列组合中的类比推理【例8】已知数列 (n为正整数)的首项为 ,公比为的q等比数列。(1)求和: (2)由(1)的结果,归纳概括出关于正整数n的一个结论,并加以证明。
【分析】本题由(1)的结论,通过大胆猜测,归纳猜想出一般性的结论:(1) (2)归纳概括的结论为:若数列 是首项为 ,公比为q的等比数列,则 (证明略)评注 本题主要考查探索能力、类比归纳能力与论证能力,突出了创新能力的考查;通过抓住问题的实质,。
2.浅谈类比法在初中数学教学中的应用
摘要:数学类比和对比法是数学教学中常用的一种重要方法,文章通过实例阐述数学类比和对比法在初中数学教学中的应用。
数学问题浩如烟海,面对一个个数学问题如何着手求解?有些学生做了大量的题目,但考试遇到新题型或只是稍稍变换一下,就不知所措,原因是在平时的学习中,缺乏掌握数学思考方法。掌握一种新的思考方法要比学会解几道具体习题更为重要,这些解题方法和技巧是进一步学习数学不可缺少的工具,数学方法的学习,在数学学习中起到事半功倍的效果,本文就数学类比和对比法在初中教学中的具体应用进行阐述。
类比是根据两个对象有一部分性质类似,推出与这两个对象的其他性质相类似的一种推理方法。因此,类比是从特殊到特殊的推理。通过类比,可以发现新旧知识的相同点,利用已有的旧知识,来认识新知识。
对比是通过比较,找出一事物区别其他事物的特点,通过对比可以找出差异,有助于进一步加深对新知识的理解。
类比和对比这两种方法是相辅相成的,都是通过新旧知识的相互联系,利用已有的旧知识,揭示新知识的本质。
例如:在学习分式这章时,关键是要用与分数类比的方法导出分式概念,分式基本性质与分式的四则运算法则,这样新知识易为学生接受与掌握,具体操作如下:
首先,复习小学学过的分数概念:两数相除,可以表示成分数的形式.如3÷4= ,(-7)÷2=- ,5÷(-9)= , 一个分数由分子、分母和分数线构成,分子、分母都是数,但分母不能是零,为什么分母不能为零呢?因为零不能做除数,分数有正分数、负分数,如果分子等于零,只要分母不是零(不论是正数还是负数),这个分数的值就是零。把分数的概念引伸到代数式来,如 这两个式子有什么特点?(1)分式由分子、分母与分数线构成;(2)分母中含有字母,这就是分式,这样就很自然地引入了分式的概念,接着,指出分数与分式的区别所在:分数与分式形式相同,但分式中的分子、分母均为整式,且分母是含有字母的整式。
其次,在讲分式的基本性质时,先复习分数的基本性质,推想分式的基本性质,我们来看如何做不同分母的分数的加法: ; ,这里先将异分母化为同分母, ,这是根据什么呢?根据分数的基本性质:分数的分子与分母都乘以(
或除以)同一个不等于零的数,分数的值不变,分式是一般化了的分数,因此,分式应该有 ,这里,A、B、M是整式,根据分式的概念应该要求B 0,由分数的基本性质应该想到M 0 。因此,分式的基本性质是分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
第三,分式的四则运算顺序也可以类比分数进行,先做括号内的运算,然后再进行乘除运算,最后进行加减运算,这个顺序和步骤正是分式四则混合运算的顺序和步骤。概括地说是:“先乘除,后加减、括号内先进行”。
在几何教学中,在讲解相似三角形判定定理可类比全等三角形得到,全等形与相似形的关系:全等三角形是相似三角形,当相似比值K=l时的特例,全等与相似条件的比较:
(1)两角相等——两三角形相似
两角相等,夹边相等——两三角形全等;
(2)两边成比例、夹角相等——两三角形相似
两边相等,夹角相等——两三角形全等;
(3)三边对应成比例——两三角形相似
三边对应相等——两三角形全等。
此外,在多项式除法与多位数除法,因式分解与质因数分解:开立方与开平方,中心对称与轴对称;分比定理与合并定理;扇形面积公式与三角形面积公式等等,都可以通过类比和对比进行教学,这种数学方法的教学,学生在学习过程中能较轻松地接受新知识,在实践中也证明,这种类比和对比的数学方法,学生掌握的知识扎实,理解也较好。当然,类比和对比只能用来帮助我们建立猜想,作为研究问题的线索。
3.如何用类比思想进行中学数学教学
3、类比思想
类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。如讲授乘法分配律时,教师出示:(45+25)+13○45+(25+13),让学生猜猜它们的结果可能会怎样?再出示:(36+18)+22○36+(18+22),大胆猜猜一下,这两题的结果会怎样?你为什么这么肯定?理由是什么?仔细观察这些等式,你有什么发现?这样的发现会不会是巧合?如果换成其他的加数是否也存在着这样的规律?然后请每个同学再模仿写一个,进行验证。最后让学生用a、b、c三个字母把自己的发现表示出来。由于学生学习了加法交换律后,学生就能很容易用字母来表示加法结合律了。教师归纳总结出(a+b)+c=a+(b+c)。类比思想还可以应用到长方形的面积公式、平行四边形面积公式和三角形的面积公式。
4、转化思想方法
转化就是在研究和解决有关数学问题时,采用某种手段将一个问题转化成为另外一个问题来解决。一般是将复杂的问题转化为简单的问题,将难解问题转化为容易求解的问题,将未解决的问题转化为已解决的问题。
例如:上“整十、整百相乘”一课时,先让学生观察,然后问一问,能不能把整十相乘转化为我们以前所学过的几乘与几,这样学生不仅很快能掌握新学得知识,还可以自己解决整百相乘。我想这是不是再渗透转化思想方法呢?
5、符号化思想方法
符号化思想是新课程的一个重要理念。数学的符号化能够不分国家和种族;符号化思想以浓缩的形式表达大量信息;加快了数学思维的速度。小学数学中有数字符号、运算符号、关系符号、单位符号、约定符号等。单位符号有厘米(cm)、米(m)、分米(dm)、毫米(mm)、千米(km)、千克(kg)、克(g)、吨(t)、平方米(㎡ ) 、平方分米 (d㎡ )、平方厘米(c㎡ ) 、立方厘米(c m3
)、立方分米(dm3
)、立方米(m3
)、毫升(mL)、升(L)。运算符号:+ - * ÷。关系符号:= ≈ ≠。约定符号:% ℃ ∠ 。数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。使数学学习简单、明了。
转载请注明出处众文网 » 类比思想在数学中的应用毕业论文(数学类比推理的运用)