1.小学数学论文8篇
去百度文库,查看完整内容>内容来自用户:k663325小学数学学生兴趣培养朱燕妮一、培养数学学习兴趣在小学数学教学中的重要性数学是其他自然科学的基础和保证.因此.学好数学对于学生以后其他学科的学习具有非常重要的现实意义.小学数学主要是促进学生在幼年时期接受数学教育.进而为将来的数学学习奠定基石.因此.培养小学生对于数学的学习兴趣显得非常重要.处于7~12岁年龄段的小学生是各项认知技能都在快速发展的阶段和人群.在这一年龄阶段.其学习数学知识的能力会随着其兴趣而得到不同的发展.如果学生因为缺乏学习兴趣.产生厌学心理.就会对其今后的发展造成不可修复的伤害.教育和教学就是培养人和塑造人的一门科学.所以说.好的教育教学是会使得人的全面发展得到增强的.二、在小学数学教学中培养学生学习兴趣的方法1.必须要实行的原则在小学数学教学中培养学生的数学兴趣是一个重要的教学问题.它必须与学生的知识结构一致和协调.符合学生的身心发展和全面发展.那么.我们就必须必须遵循和执行一定的原则:(1)适应性原则适应性原则要求在小学数学教育的日常活动中.学习兴趣是关键.那么.我们就需要以此为原则来不用该年龄阶段的知识去引导学生的努力方向.比如说.现在小学阶段.那些小学奥数比赛已经非常流行了.这些所谓的奥数竞赛小学数学人教版教材实践3。
2.小学数学论文
数学小论文 关于“0” 0,可以说是人类最早接触的数了。
我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。
我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。
2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”“任何数除以0即为没有意义。”
这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。
后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。
203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”
我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
3.有没有关于小学数学专业的毕业论文
前言: 当今,在社会环境对从业人员要求具有更高学历的激励下,在各类专业人员不断进行知识更新的进程中,广泛地存在着要求提高自己的数学水平的愿望.特别对于原来只学过普通微积分课程的人来说,他们在补习各自所需要的数学知识时,因缺乏牢固的数学基础,不可避免地会遇到很多困难.本论文就是在为他们讲授数学分析理论基础课的讲义的基础上写成的.考虑到在职人员投入业余学习的时间十分有限,要他们系统地学完一门数学分析这样的大课程几乎是不可能的.一种可行而有效的做法或许是这样的--选择几个起主导作用的专题,讲授其中那些具有原则意义的概念和思想,通过举例讨论一些典型问题的解法. 序言: 自20世纪90年代后期开始,我国的高等教育改革步伐日益加快.实行5天工作制,使教学总时数减少,而新的专业课程却不断出现.在这样的情况下,对传统的专业课程应该如何处置,这样一个不能回避的问题就摆在了我们的面前.而这时,教育部师范司启动了面向21世纪教学改革计划.在我们进行"数学专业培养方案"项目的研究中,这个问题有两种方案可以选择:一是简单化的做法,或者削减必修课的数量,将一些传统的数学课程从必修课的名单中去掉,变为选修课,或者少讲内容减少课时;二是对每门课程的教学内容进行优化、整合,建立一些理论平台,减少一些繁琐的论证和计算,以达到削减课时,同时又能保证基本教学内容. 目录: 第一章 实数理论 1.1 建立实数的原则与完备有序域 *1.2 戴德金分划说简介 1.3 无限小数与实数 1.4 实数完备性的等价命题 *1.5 上极限与下极限 第二章 连续性 2.1 n维欧氏空间 2.2 函数概念的演进 2.3 函数极限和连续的一般定义 2.4 连续函数的整体性质 2.5 不动点与压缩映射原理简介 第三章 微分学 3.1 可微性的统一定义 3.2 可微函数的性质 3.3 微分中值定理与导函数的性质 3.4 凸函数 3.5 例题续编 第四章 积分学 4.1 定积分概念与牛顿-莱布尼兹公式 4.2 可积条件 4.3 定积分的性质 4.4 变限积分 4.5 反常积分 第五章 级数 5.1 数项级数综述 5.2 一致收敛概念的提出 5.3 一致收敛判别 5.4 一致收敛函数列(或级数)的性质 1、小学数学论文的组成 小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。
但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”
所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。
所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。
需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。
结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。
参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。
要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。
其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。
第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。
论文选题确定后,就要注意写好提纲,这是写。
4.有没有关于小学数学专业的毕业论文
前言: 当今,在社会环境对从业人员要求具有更高学历的激励下,在各类专业人员不断进行知识更新的进程中,广泛地存在着要求提高自己的数学水平的愿望.特别对于原来只学过普通微积分课程的人来说,他们在补习各自所需要的数学知识时,因缺乏牢固的数学基础,不可避免地会遇到很多困难.本论文就是在为他们讲授数学分析理论基础课的讲义的基础上写成的.考虑到在职人员投入业余学习的时间十分有限,要他们系统地学完一门数学分析这样的大课程几乎是不可能的.一种可行而有效的做法或许是这样的--选择几个起主导作用的专题,讲授其中那些具有原则意义的概念和思想,通过举例讨论一些典型问题的解法. 序言: 自20世纪90年代后期开始,我国的高等教育改革步伐日益加快.实行5天工作制,使教学总时数减少,而新的专业课程却不断出现.在这样的情况下,对传统的专业课程应该如何处置,这样一个不能回避的问题就摆在了我们的面前.而这时,教育部师范司启动了面向21世纪教学改革计划.在我们进行"数学专业培养方案"项目的研究中,这个问题有两种方案可以选择:一是简单化的做法,或者削减必修课的数量,将一些传统的数学课程从必修课的名单中去掉,变为选修课,或者少讲内容减少课时;二是对每门课程的教学内容进行优化、整合,建立一些理论平台,减少一些繁琐的论证和计算,以达到削减课时,同时又能保证基本教学内容. 目录: 第一章 实数理论 1.1 建立实数的原则与完备有序域 *1.2 戴德金分划说简介 1.3 无限小数与实数 1.4 实数完备性的等价命题 *1.5 上极限与下极限 第二章 连续性 2.1 n维欧氏空间 2.2 函数概念的演进 2.3 函数极限和连续的一般定义 2.4 连续函数的整体性质 2.5 不动点与压缩映射原理简介 第三章 微分学 3.1 可微性的统一定义 3.2 可微函数的性质 3.3 微分中值定理与导函数的性质 3.4 凸函数 3.5 例题续编 第四章 积分学 4.1 定积分概念与牛顿-莱布尼兹公式 4.2 可积条件 4.3 定积分的性质 4.4 变限积分 4.5 反常积分 第五章 级数 5.1 数项级数综述 5.2 一致收敛概念的提出 5.3 一致收敛判别 5.4 一致收敛函数列(或级数)的性质 1、小学数学论文的组成 小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。
但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”
所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。
所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。
需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。
结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。
参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。
要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。
其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。
第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。
论文选题确定后,就要注意写好提纲,这是写。
5.小学数学论文
数学发展史 此书记录了世界初等数学的发展与变迁。
可大体分为“数的出现”、“数字与符号的起源与发展”、“分数”、“代数与方程”、“几何”、“数论”与“名著录”七大项,跨度千万年。可让读者了解数学的光辉历史与发展。
是将历史与数学结合出的趣味百科读物。数的出现一、数的概念出现 人对于“数”的概念是与身俱来的。
从原始人开始,人就能分出一与二与三的区别,从而,就有了对数的认识。而为了表示数,原始人就创造并使用了一种古老却笨拙且不太实用的方法——结绳计数。
通过在绳子上打结来表示所指物体的数量,而为了辨认数量,也就出现了数数这一重要的方法。这一方法如今看来十分笨拙,但却是人对数学的认识由零到一的关键一步。
从这笨拙的一步人们也意识到:对数学的阐述必须要尽量得简洁清楚。这是一个从那时开始便影响至今的人类第一个数学方面的认识,这也是人类为了解数学而迈出的关键性一步。
数字与符号的起源与发展一、数的出现 很快,人类就又迈出了一大步。随着文字的出现,最原始的数字就出现了。
且更令人高兴的是,人们将自己的认识代入了设计之中,他们想到了“以一个大的代替多个小的”这种方法来设计,而在字符表示之中,就是“进位制”。在众多的数码之中,有古巴比仑的二十进制数码、古罗马字符,但一直流传至今的,世界通用的阿拉伯数字。
它们告诉了我们:简洁的,就是最好的。 而现在,又出现了“二进制数”、“三进制数”等低位进制数,有时人们会认为它们有些过度的“简洁”,使数据会过多得长,而不便书写,且熟悉了十进制的阿拉伯数字后,改变进制的换算也十分麻烦。
其实,人是高等动物 ,理解能力强,从古至今都以十为整,所以习惯了十进制。可是,不是所有的东西都有智商,而且不可能智商高到能明显区分1-10,却能通过明显相反的方式表达两个数码。
于是,人类创造了“二进制数”,不过它们不便书写,只适用于计算机和某些智能机器。但不可否认的是,它又创造了一种新的数码表示方法。
二、符号的出现 加减乘除〈+、-、*(·)、÷(∶)〉等数学符号是我们每一个人最熟悉的符号,因为不光在数学学习中离不开它们,几乎每天的日常的生活也离不开它们。别看它们这么简单,直到17世纪中叶才全部形成。
法国数学家许凯在1484年写成的《算术三篇》中,使用了一些编写符号,如用D表示加法,用M表示减法。这两个符号最早出现在德国数学家维德曼写的《商业速算法》中,他用“+”表示超过,用“-”表示不足。
1、加号(+)和减号(-) 加减号“+”,“-”,1489年德国数学家魏德曼在他的著作中首先使用了这两个符号,但正式为大家公认是从1514年荷兰数学家荷伊克开始。到1514年,荷兰的赫克首次用“+”表示加法,用“-”表示减法。
1544年,德国数学家施蒂费尔在《整数算术》中正式用“+”和“-”表示加减,这两个符号逐渐被公认为真正的算术符号,广泛采用。2、乘号(*、·) 乘号“*”,英国数学家奥屈特于1631年提出用“*”表示相乘。
英国数学家奥特雷德于1631年出版的《数学之钥》中引入这种记法。据说是由加法符号+变动而来,因为乘法运算是从相同数的连加运算发展而来的。
另一乘号“·”是数学家赫锐奥特首创的。后来,莱布尼兹认为“*”容易与“X”相混淆,建议用“·”表示乘号,这样,“·”也得到了承认。
3、除号(÷) 除法除号“÷”,最初这个符号是作为减号在欧洲大陆流行,奥屈特用“:”表示除或比.也有人用分数线表示比,后来有人把二者结合起来就变成了“÷”。瑞士的数学家拉哈的著作中正式把“÷”作为除号。
符号“÷”是英国的瓦里斯最初使用的,后来在英国得到了推广。除的本意是分,符号“÷”的中间的横线把上、下两部分分开,形象地表示了“分”。
至此,四则运算符号齐备了,当时还远未达到被各国普遍采用的程度。4、等号(=) 等号“=”,最初是1540年由英国牛津大学教授瑞柯德开始使用。
1591年法国数学家韦达在其著作中大量使用后,才逐渐为人们所接受。分数一、分数的产生与定义 人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。
一个物体,一个图形,一个计量单位,都可看作单位“1”。把单位“1”平均分成几份,表示这样一份或几份的数叫做分数。
在分数里,表示把单位“1”平均分成多少份的叫做分母,表示有这样多少份的叫做分子;其中的一份叫做分数单位。 分子,分母同时乘或除以一个相同的数〔0除外〕,分数的大小不变.这就是分数的基本性质.分数一般包括:真分数,假分数,带分数. 真分数小于1. 假分数大于1,或者等于1. 带分数大于1而又是最简分数.带分数是由一个整数和一个真分数组成的。
注意 :①分母和分子中不能有0,否则无意义。 ②分数中的分子或分母不能出现无理数(如2的平方根),否则就不是分数。
③一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数;如果最简分数的分母中既含有2或5两个质因数也含有2和5。
6.紧急,求小学数学论文
毕业论文
小学数学中的许多知识和能力在现实生活中都能找到原型。
比如可以把课堂搬到教室外面去,因为数学知识源于生活,但并不是生活本身的摹本,它具有高度的抽象性,这对于以具体形象为主、生活经验匮乏的我们来说,难以得到透彻的理解。在学习米、千克时,老师先让我们利用手中的米尺,量一量跳绳、旗杆、课桌椅等,称一称自己带来的轻便的物品,如盐、味精、苹果等,然后总结。老师讲得唇焦舌燥,我们忙得不亦乐乎。可是在练习的时候,还有很多同学无法下手。
由此,我想到了,在教室里能让我们动手去做的事实在是太少了,很多生活中的物品无法在课堂上让我们亲自去感受。对于米、千克的认识,我们得到的感性认识实在是太少了。老师就让我们用自己的小皮尺去量学校里的任何东西,大家都兴致勃勃地忙开了,有的去量讲台、课桌、黑板的长和宽,有的走出教室去量花坛,还有的同学去量篮球场。下课回到家后,有的人还在家里继续量。
我们回校后汇报了自己的经历,并说出了由于单个东西的大小不同,所以一千克物品的个数也不相同的体验。如:一千克鸡蛋大约有10只,而一只鸭却有二千克等。再做练习时,所有的问题都能迎刃而解了,因为“1米”、“1千克”的概念在我们自己头脑中已经形成,并且相当坚固了。
在生活体验中,培养观察能力。引导我们有目的、有意识地观察生活中的数学问题,既有利于大家收集信息,又有利于自己的观察能力的培养和发展。
如学习圆柱时,老师让大家来个收集图形的大行动,找出生活是圆柱形的物体,再比较各种物体的相同点。这样学习的好处是,迫使我们用书上所学的关于圆柱的知识。
在生活体验中,培养表达能力。生活中有许多关于数学的知识,让自己将生活中捕捉到的信息说出来,不仅能培养我们的口头表达能力,还能帮助大家更好地了解生活。
如学“元、角、分”时,我让学生在课前去收集关于人民币的知识。在课堂上,大家讨论、交流、汇报了收集的信息了解了人民币的种类繁多:有纸币,有硬币,有1分、2分、5分、1角、2角、5角、1元、2元、5元、10元、50元、100元等不同面值,以及人民币的广泛用途。在学怎样读数时,老师给我们布置了一个任务——收集生活中有万以内数的信息。同学们都积极地投入到准备中。课堂汇报时,同学们纷纷说出了所收集到的信息,如学校操场一圈的长度是200米,电冰箱的价格是2500元,珠穆朗玛峰的高度是8848米等等,信息包括了生活中各个方面,大家也很好地了解了数在生活中的体现,真正做到了学以致用。
总之,数学学习与熟悉的生活素材是密切相关的,能不断地沟通数学于生活的联系,使数学与生活紧紧相连。
7.三年级数学论文
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.当然,看http:// 。
8.小学数学论文可以写什么
有一天,我跟妈妈去逛商场。
妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。
看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。 ”我定下心,仔细地想了起来。
过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。 ”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。
在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试。
9.数学毕业论文怎么写
不识最大自然数等使课本有一系列重大根本错误
【论文关键词】标准及非标准无穷大数 假自然数集 推翻百年自然数公理和集论 极限论 级数论 变量的变域
【论文摘要】可数集的各元都必可有自然数“配偶”这一特点使自识正整数5千年来一直“深埋地下”的最大自然数及无穷多无穷大自然数一下子“破土而出”推翻百年“标准实数完备”论,显示已知实数全体仅为实数宇宙中的一颗星球!从而揭示中、小学课本有一系列重大错误:搞错变量的变域而将部分误为全部(继而推出病态的“部分可=全部”);误以为“有首项的无穷数列必无末项”使级数论有常识性与概念性错误而使小学课本违反起码数学常识地断定0.99。=1;。。
一、极限论极难学的真因:常人拒绝思想混乱的理论
“数学是研究无穷的学科。”标准分析之前2千多年的数学一直使用无穷数进行推理计算并取得了一系列伟大成就,只不过对这类举足轻重的“更无理”数一直无力实现由感性认识跃升到理性认识罢了;本文表明实现此飞跃破解由“错误的无穷数概念”竟能推出许多正确结果这一“神秘”之谜竟须历时2千多年!太伟大的实践往往远远超前理论2千多年。故“数学的前进主要是由那些具有超常直觉的人们推动的,而非由那些长于做出严格证明的人们[1]。”当理论无法解释伟大实践时恰恰表明理论有重大缺陷,不能反而由理论来否定无穷数和行之极有效的无穷小数分析法(以下简称w法)。若无穷数不存在,w法就不堪一击而绝不可2千多年不倒。“‘真人不露相’,数学大厦有‘不露相’的骨干数。没有包在墙内的钢筋铁骨的大厦,越建得高就越不堪一击[2]。”本文表明否定这类数是百年重大冤案。 本文来自第一论文网
有超常直觉的莱布尼茨运用<;任何有穷正数的无穷小正数,建立了微积分。但缺乏超常直觉的后来者错误地认为使用无穷数是非法的,须以极限法来取代w法。然而[2]指出极限论有百年糊涂话。最关键要弄清j式0j式表达ρ所取各正数ρ均<;ε,“可从某时刻起以后所取各正数ρ均<;ε的ρ>0称为正无穷小”点明没<;ε的正数就没正无穷小变量,然而极限论又说无正数[3]书在“序列极限的精确描述”中说j式表示ρ“可以变得比任何一个固定的正数小”(100页)。而正数集的元都是固定正数。刘玉琏等《数学分析讲义学习辅导书上册(二版)》(高教出版社,2003)33页:"ε∈(0,
1)=D——表示ε可是D的任何一个数。许品芳等《高等数学(上)》5页:“对于任何正数ε”“ε代表着任何一个正数”(兵器工业出版社,1992.7)。无正数来源于
毕业论文
望可以帮到您。
10.四年级数学论文(5篇)
小学四年级数学浅析
现代社会已进入信息化时代,要求人们不仅要“学会”,更要“会学”。要想让学生从“学会”到“会学”,就是要培养学生的自学能力. 创新心理学的研究表明,自学能力对于人的未来具有头等重要的意义,是各种能力中最重要的能力。而阅读是自学的主要形式,自学能力的核心是阅读能力。数学阅读能力是一种重要的数学能力,它是数学思维的基础和前提。“阅读”,乍一看好像是语文课和外语课中的专用名词,但实际上,数学课更离不开阅读能力培养这一环节。我们有一些偏见,认为阅读只是语文教学的事,在数学的教与学的过程中,仅注意数式的演算步骤,而忽略对数学语言的理解。然而,随着社会的发展、科学技术的进步及“社会的数学化”,仅具语文阅读能力的社会人已明显地显露出其能力的不足,如他们看不懂某些产品使用说明书,看不懂股市走势图,等等。由此可见,加强数学阅读的教学,显得尤为重要。叶圣陶老先生有一句名言:“教是为了不教。”要想使数学素质教育目标落到实处,使学生最终能独立自主地学习,就必须重视数学阅读,特别是引导学生如何进行数学阅读至关重要。
一、读练结合习惯的养成
我们知道,动手操作是促进理解、减少数学学习困难的有效手段。而解题练习又是巩固数学知识、形成技能技巧、培养把数学知识应用于实际的重要途径。与其它学科相比,数学学习尤其离不开操作、练习。在阅读 学习中,倡导读做结合、读练结合,实际上就是引导学生把已初步理解的一些知识,运用到新的知识情境中去,用新的知识体系去解释新的现象。这种过程既是知识的复现,又有助于学生加深对新学知识的理解记忆,同 时也有助于学生把凝固的认知结构转化为能动的能力,提高理论联系实际、解决实际问题的素质。
如“圆的认识”中,学习圆的画法。当学生阅读了画圆的基本操作步骤以后,及时要求根据教材中规定的步骤试着先画一个圆。画好后讨论:①画圆时,有一只脚固定不动,是哪只脚?②在纸面上不停移动的是哪只 脚?它是怎样移动的?③同学们画出来的圆有大有小,那么什么情况下画出来的圆较大,什么情况下较小?最后再要求学生画指定大小的圆。经常进行这样读练结合的教学,潜移默化中,学生便逐步养成了读练结合的良好习惯
二、应用题的阅读
应用题是小学数学的重点和难点,新课程背景下的应用题教学,应用题的呈现要更加贴近社会生产、生活的实际情况,应该努力实现应用题呈现形式的多样化,除文字叙述外,还可以用表格、图画、对话等方式,适当增加有多余条件和开放性的问题,向学生提供鲜活的、真实的、有趣味的和具有探索思考价值的数学问题,以凸显应用题的问题特征,培养学生的搜集信息、处理信息的能力和分析问题、解决问题的能力。可现在经常发现解应用题不会分析,有的题孩子解答不出时,只要教师将题目读一遍,有时甚至读到一半时,他就会叫道“哦,原来如此!”?原因就出在学生的阅读能力上,特别是在解应用题上显得非常重要。我认为学生在读题时没有养成良好的阅读习惯。通过我平日的观察,有的同学在做题时,根本没把题读完就动手解答;又或者在读题的过程中,添字、漏字,关键性词没有注意到,理解错误了,题做错也就不足为怪了。所以教师在平时的教学中,要注意指导学生读题,从整体入手,把关键性的词作上记号,深入地理解。学生自然而然就养成良好的阅读习惯,也提高了阅读应用题的能力和经验,为顺利、正确的解答应用题打好了基础。
三、推荐数学课外阅读书籍,加强阅读指导。
苏霍姆林斯基曾经说:“课外阅读用形象的话来说,既是思考的大船借以航行的帆,也是鼓帆前进的风。没有阅读,就既没有帆,也没有风。阅读就是独立地在知识的海洋里航行。”
为了提高学生的数学阅读兴趣,扩展学生的数学视野,使他们多方面领会数学的美和数学的应用,我向学生推荐了适合他们阅读的课外书籍,如我国张景中院士的科普读物:《数学家的眼光》、《数学传奇》等。同时指导学生写阅读体会。
总之,数学教学中的阅读教学,应当是一种意识,一种旨在培养学生阅读、理解、自学能力和习惯的意识,而不是一种形式它应当渗透到教学的各个环节中去。数学阅读既可以拓展学生的知识面与深度,增加学习兴趣,又可以使学生在陌生领域施展才华,学会用数学的眼光看待社会、人生、世界,使批判性思维能力,创新能力得到充分地发挥。重视数学阅读,培养阅读能力,还有助于学生个性的全面的发展,以真正达到“教学生学会学习”的教育目标。
转载请注明出处众文网 » 2011小学数学毕业论文(小学数学论文8篇)