1.二元函数的可微性
设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:
△z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=((△x)^2+(△y)^2)^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零.则称f在P0点可微. 可微的充要条件是曲面z=f(x,y)在点P(x0,y0,f(x0,y0))存在不平行于z轴的切平面Π的充要条件是函数f在点P0(x0,y0)可微.
这个切面的方程应为Z-z0=A(X-x0)+B(Y-y0)
A,B的意义如定义所示
2.论文题目是“讨论一元函数连续与可导,可导与可微的关系”的论文开
你可介绍一下 论文中将包含
1、一元函数连续的条件(即什么时候能连续),并少量举例;
2、一元函数可导的条件,并举例;
3、介绍连续和可导是什么关系,什么情况下连续函数可导,什么情况下连续函数不可导,并举例;
4、介绍可微的定义,并举例;
5、介绍可导和可微的关系,同3。
举例的时候,一定要举哪些比较经典的,当然自己构造的函数也很好。
说实在的,这个题目的论文很好写,但不会有什么新意。仅是毕业而用,很好写,但要想争取优秀或者发表那是不太现实的了。
3.求一篇关于一元二次函数的论文
一、目的要求 从一元二次方程、一元二次不等式与二次函数的关系出发,掌握利用二次函数图象求解一元二次不等式的方法。
二、内容分析 1.本小节首先对照学生已经了解的一元一次方程、一元一次不等式与一次函数的关系,利用二次函数的图象,找出一元二次方程、一元二次不等式与二次函数的关系,进而得到利用二次函数图象求解一元二次不等式的方法。然后,说明一元二次不等式可以转化为一元一次不等式组,由此又引出了简单的分式不等式的解法。
2.本节课学习一元二次不等式的解法,这是这小节的重点,关键是弄清一元二次方程、一元二次不等式与二次函数的关系。 三、教学过程 复习提问: 1.当x取什么值的时候,3x-15的值 (1)等于0;(2)大于0;(3)小于0。
(这是初中作过的题目) 2.你可以用几种方法求解上题? 新课讲解: 像3x-15>0(或0。 (2)代数解法:用不等式的三条基本性质直接求解。
注这个方法也是对比一元一次方程的解法得到的。 复习提问: 画出函数的图象,利用图象回答: (1)方程的解是什么; (2)x取什么值时,函数值大于0; (3)x取什么值时,函数值小于0。
(这也是初中作过的题目) 新课讲解: 1.结合二次函数的对应值表与图象(表、图略),可以得出,方程的解是x=-2,或x=3; 当x3时,y>0,即; 当-2 经上结果表明,由一元二次方程数的解是x=-2,或x=3,结合二次函数图象,就可以知道一元二次不等式的解集是 {x|x3}; 一元二次不等式的解集是 {x|-2 提出问题: 一般地,怎样确定一元二次不等式与的解集呢? 组织讨论: 从上面的例子出发,综合学生的意见,可以归纳出确定一元二次不等式的解集,关键要考虑以下两点: (1)抛物线与x轴的相关位置的情况,也就是一元二次方程的根的情况 (2)抛物线的开口方向,也就是a的符号。 新课讲解: 1.总结讨论结果: (1)抛物线(a>0)与x轴的相关位置,分为三种情况,这可以由一元二次方程的判别式三种取值情况(Δ>0,Δ=0,Δ0。
2.分Δ>O,Δ=0,Δ。
4.如何证明二元函数的可微性
证明二元函数可微性:
判定二元函数的可微性,关键要理解二元函数连续、偏导数存在、方向导数存在、偏导数存在且连续这四个概念与可微之间的关系。本文着重分析这四种关系,给出判定二元函数在某点可微的方法。关键词: 二元函数 连续 偏导数 可微 方向导数对于一元函数,可微性比较容易判定。因为一元函数在某个点连续、可导、可微这三个概念的关系是很清楚的,可简单地表示为:可微?圳可导?圯连续。
首先,对于以一元函数,比较简单,可微一定可导,可导一定可微。对于多元函数:偏导数存在不一定可微,可微一定存在偏导.(还有,偏导数存在时函数不一定连续)二元函数,可微的充要条件是:
z=f(x,y)在(Xo,Yo)处的偏导数f`x(Xo,Yo),f`y(Xo,Yo)存在 且
{Δz-[f`x(x0,y0)h+f`y (x0,y0)k]}/ ρ=0 ( ρ→0)
其中 k=Δx h=Δy ρ=就是动点和定点的距离,那个式子 根下(x-xo)2+(y-yo)2。
证明方法:1、用定义去验证。
2、利用充分条件 验证偏导函数连续。
二元可微的条件:
必要条件:若函数在某点可微,则该函数在该点对x和y的偏导数必存在。
充分条件:若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
转载请注明出处众文网 » 二元函数可微性毕业论文(二元函数的可微性)