毕业论文数据挖掘

1.数据挖掘课程写什么类型的课程论文呢

1.撰写毕业论文是检验学生在校学习成果的重要措施,也是提高教学质量的重要环节。大学生在毕业前都必须完成毕业论文的撰写任务。申请学位必须提交相应的学位论文,经答辩通过后,方可取得学位。可以这么说,毕业论文是结束大学学习生活走向社会的一个中介和桥梁。毕业论文是大学生才华的第一次显露,是向祖国和人民所交的一份有份量的答卷,是投身社会主义现代化建设事业的报到书。一篇毕业论文虽然不能全面地反映出一个人的才华,也不一定能对社会直接带来巨大的效益,对专业产生开拓性的影响。实践证明,撰写毕业论文是提高教学质量的重要环节,是保证出好人才的重要措施。

2.通过撰写毕业论文,提高写作水平是干部队伍“四化”建设的需要。党中央要求,为了适应现代化建设的需要,领导班子成员应当逐步实现“革命化、年轻化、知识化、专业化”。这个“四化”的要求,也包含了对干部写作能力和写作水平的要求。

3.提高大学生的写作水平是社会主义物质文明和精神文明建设的需要。在新的历史时期,无论是提高全族的科学文化水平,掌握现代科技知识和科学管理方法,还是培养社会主义新人,都要求我们的干部具有较高的写作能力。在经济建设中,作为领导人员和机关的办事人员,要写指示、通知、总结、调查报告等应用文;要写说明书、广告、解说词等说明文;还要写科学论文、经济评论等议论文。在当今信息社会中,信息对于加快经济发展速度,取得良好的经济效益发挥着愈来愈大的作用。写作是以语言文字为信号,是传达信息的方式。信息的来源、信息的收集、信息的储存、整理、传播等等都离不开写作。

2.急求有关数据挖掘方面的毕业论文题目

寿险行业数据挖掘应用分析

寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。

数据挖掘

数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。

目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。

商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。

行业数据挖掘

经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。

根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。

针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。

挖掘系统架构

挖掘系统包括规则生成子系统和应用评估子系统两个部分。

规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。

应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。

目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。

实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。

3.求数据挖掘的论文

数据挖掘、OLAP在财务决策中的应用杨春华(杭州商学院财务与会计学院,杭州,310012)[摘要]数据挖掘、OLAP是当前基于大型数据库或数据仓库的新型信息分析技术,在许多领域得到广泛应用,取得了很好的成效。

如何将其应用于财务决策以提高决策的正确性、及时性,降低决策的风险,已成为财务管理领域的重要研究课题。本文在介绍数据挖掘、OLAP技术及其相互关系的基础上,分析了财务决策领域应用这两种技术的现实必要性,并进一步论述了财务决策中数据挖掘和OLAP的应用流程。

[Abstract]In this paper, the author introduced Data Mining and OLAP at first. And then, the author analyzed the practical necessity for the firms to apply these two techniques in the area of financial decision-making. In the end, the author brought forward the flow of the appliance.[关键词]数据挖掘,联机分析处理,财务决策[Key words]Data Mining,OnLine Analysis Process(OLAP),Financial Decision-making正文随着计算机技术和Internet技术的发展,以及企业在以往事务型处理中数据的不断积累,一方面企业数据资源日益丰富,信息超载,另一方面数据资源中蕴涵的知识企业却至今未能得到充分的挖掘和利用,“数据丰富而知识贫乏”是常见现象。如何才能不被信息的汪洋大海所淹没,并能从中及时发现有用的知识,提高信息的利用效率,已成为企业急需面对的一个问题。

正是在这种背景下,数据挖掘、OLAP技术应运而生。这是两种基于大量数据库或数据仓库的新型数据分析技术。

将其应用到财务决策领域则有利于提高决策的正确性、及时性,降低决策的风险。一、数据挖掘与OLAP1.数据挖掘关于数据挖掘,一种较为公认的定义是由G.Piatetsky-Shapiro等人提出的。

他们认为:数据挖掘是从大型数据库中提取人们感兴趣的知识,这些知识是隐含的、事先不知的,潜在有用的信息。数据挖掘涉及到机器学习、模式识别、统计学、智能数据库、知识获取、数据可视化、高性能计算、专家系统等各个领域。

它不仅面向特定数据库的简单检索查询调用,而且要对这些数据进行微观、中观乃至宏观的统计、分析、综合和推理,以指导实际问题的求解,企图发现事件间的相互关联,甚至利用已有的数据对未来的活动进行预测。这样一来,就把人们对数据的应用从低层次的末端查询操作,提高到为各级经营决策者提供决策支持。

2.OLAP联机分析处理(OLAP)的概念最早是由关系数据库之父E.F.Codd于1993年提出的,它是基于大型数据库或数据仓库的信息分析过程,是大型数据库或数据仓库的用户接口部分,其目的是满足决策支持或多维环境特定的查询和报表要求。简单地讲,OLAP就是共享多维信息的快速分析。

它是跨部门、面向主题的,其基本特点是快速性、可分析性、多维性、信息性和共享性。也就是说,OLAP能快速响应用户的要求,能处理与应用有关的任何逻辑分析和统计分析,能提供多维数据分析的多维视图,能及时获得信息和管理大容量的信息,以及能在大量用户群中共享潜在的数据。

其中“多维性”是其核心灵魂。3.数据挖掘与OLAP数据挖掘和OLAP都是基于大型数据库或数据仓库的数据分析技术,有着一定的联系和区别。

数据挖掘和OLAP最本质的区别在于,数据挖掘是一种挖掘性的分析工具,它主要是利用各种分析方法主动地去挖掘大量数据中蕴涵的规律,产生一些假设,帮助人们在这些假设的基础上更有效地进行决策;而OLAP则是一种求证性的分析工具,一般由用户预先设定一些假设,然后使用OLAP去验证这些假设,提供可以使用户很方便地进行数据分析的手段。但就工具而言,数据挖掘和OLAP这两种分析工具本身又是相辅相成的,且界限正在逐渐模糊。

OLAP的分析结果可以补充到系统知识库中,给数据挖掘提供分析信息并作为数据挖掘的依据;数据挖掘发现的知识可以指导OLAP的分析处理,拓展OLAP分析的深度,以便发现OLAP所不能发现的更为复杂、细致的信息。二、财务决策中应用数据挖掘、OLAP的必要性财务决策是企业决策中最重要的组成部分之一。

任何好的财务决策都需要事实和数字支持。一个财务决策的正确程度取决于所使用的事实和数字的正确程度。

随着竞争的增加,财务决策的时效性也变得越来越重要了。因此,在财务决策领域应用数据挖掘、OLAP是企业现实的需要。

1.有利于提高财务信息的利用能力。解决企业财务决策问题需要询问为中心的数据图解,其以序列导向和多维为特征。

而传统的财务数据查询是一种事务处理(OLTP),它是面向应用,支持日常操作的,对查询得到的数据信息缺乏分析能力,决策者不能够在大量历史数据的支持下对某一主题的相关数据进行多角度的比较、分析,得出科学的分析结果。因此,财务决策问题自身的多维特性驱动了数据挖掘、OLAP在其领域的应用,以提高财务信息的利用能力。

2.有利于解决财务信息的噪音问题。科学财务决策必须以尽可能真实、及时、充分的信息为依据。

这些信息既包括诸如企业目标、企业现状、事物状况等企业的内部资料,又包括诸如客户、供应商等企业的关联。

4.急求有关数据挖掘方面的毕业论文题目

寿险行业数据挖掘应用分析 寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。

如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。

寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。 数据挖掘 数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。

其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。 目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。

CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。

CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。 商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。

建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。

在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。 行业数据挖掘 经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。

同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。 根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。

这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。 针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。

从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。

同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。 挖掘系统架构 挖掘系统包括规则生成子系统和应用评估子系统两个部分。

规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。

发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。 应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。

通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。

规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。

目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。 实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。

毕业论文数据挖掘

转载请注明出处众文网 » 毕业论文数据挖掘

资讯

出纳毕业论文

阅读(106)

本文主要为您介绍出纳毕业论文,内容包括求3000字会计论文,急求一篇关于出纳的毕业综合实践报告(毕业论文),会计专业的毕业论文怎么写啊题目什么的最好选什么。提供一些会计毕业论文的选题方向,供参考。会计方面(含会计理论、财务会计、成本会计

资讯

p2p毕业论文

阅读(107)

本文主要为您介绍p2p毕业论文,内容包括有关p2p网贷的论文要怎么写,本科毕业论文《互联网金融监管问题研究—以p2p网络借贷为例》大佬,金融专业,毕业论文写什么好,最好有题目。对等网络(Peer to Peer,简称P2P)又称点对点技术,是无中心服务器、依

资讯

会计毕业论文文献

阅读(94)

本文主要为您介绍会计毕业论文文献,内容包括会计专业毕业论文需要什么参考文献,会计论文参考文献5个,会计论文参考文献。原发布者:yyz926098136会计毕业论文参考文献邓春华,《财务会计风险防范》,中国财政经济出版社,2001年版。2、王春峰,《金融

资讯

数学毕业论文范文

阅读(93)

本文主要为您介绍数学毕业论文范文,内容包括数学毕业论文怎么写,数学毕业论文怎么写,数学论文怎么写。浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识

资讯

南京师范大学毕业论文

阅读(88)

本文主要为您介绍南京师范大学毕业论文,内容包括跪求:南师大的本科毕业论文答辩难吗,不过的人多吗,南京师范大学毕业论文开题报告查重吗,南师大的本科毕业论文要被检测吗。一般不会,但是有补答,也就是二辩的可能。论文检测没通过的,会延迟答辩,

资讯

毕业论文题目翻译

阅读(96)

本文主要为您介绍毕业论文题目翻译,内容包括英语专业毕业论文题目,翻译方向,毕业论文题目翻译求翻译,毕业论文题目翻译。提供一些英语专业翻译方向的论文题目,供参考。商务合同英汉互译技巧英文品牌汉译知识对于翻译的重要性中英文化差异及

资讯

红楼梦毕业论文

阅读(87)

本文主要为您介绍红楼梦毕业论文,内容包括红楼梦论文2000字以上,求一篇3000字的关于《红楼梦》的论文,想写有关《红楼梦》的论文,有什么好的选题或角度比较。论《红楼梦》的思想性 这里要谈的,是曹雪芹《红楼梦》的思想性;也就是要排除开现在

资讯

本科毕业论文知网

阅读(107)

本文主要为您介绍本科毕业论文知网,内容包括本科生的论文一定会被知网收录么,本科生论文知网收录吗,本科毕业论文录入知网吗。本科生的论文不一定一定会被知网收录。本科论文版权在学校手里。有的学校论文直接就给知网了,有的学校论文不给知

资讯

室内毕业设计论文

阅读(112)

本文主要为您介绍室内毕业设计论文,内容包括求室内设计论文一篇,字数在1500左右,1500字的室内设计毕业论文,急求室内设计毕业论文报告~~~3000字左右。经过一个学期设计课程的学习,从中也学到了好多东西。在设计过程中,遇到不少难题,对于一位设

资讯

毕业论文查重表格

阅读(108)

本文主要为您介绍毕业论文查重表格,内容包括论文查重会查表格吗,本科毕业生论文查重系统,表格会查重么,本科毕业论文查重系统,表格会查重吗。你好的!@ 表格里的也会查的! 只要不是图片的话都会被查出来! 你可以将表格截图先逃过查重! 弄完之后

资讯

2013优秀毕业论文

阅读(99)

本文主要为您介绍2013优秀毕业论文,内容包括大学生人生规划论文,800字左右,优秀毕业论文有什么用,被评为优秀毕业论文有什么好处。一份好的工作,是可遇不可求的。世界500强和国内领先企业每年都会进行校园招聘,能应聘上的,自然说明你综合素质

资讯

广告专业毕业论文

阅读(111)

本文主要为您介绍广告专业毕业论文,内容包括广告学的毕业论文有什么好题目,广告专业论文题目都啊,广告学毕业论文题目。工广告专业毕业论文选题营销传播 结合个案分析事件营销 促销活动与广告传播策略 营销策略与广告传播 整合营销传播

资讯

毕业论文制图

阅读(102)

本文主要为您介绍毕业论文制图,内容包括毕业论文用什么画图软件画一般的图,请问写毕业论文怎么作图在Word中可以画图吗还是必须要用什么,如何在论文中画出漂亮的插图。用Microsoft Office Visio,我的毕业设计论文用的Microsoft Office Visio

资讯

会计自考毕业论文

阅读(104)

本文主要为您介绍会计自考毕业论文,内容包括自考会计毕业论文应该从哪些书中找资料,自考的会计毕业论文怎么写,自考会计毕业论文应该从哪些书中找资料自考会计毕业论文应该从哪。自考会计专业是一门专业性、技术性强的专业,同学们在撰写本专

资讯

出纳毕业论文

阅读(106)

本文主要为您介绍出纳毕业论文,内容包括求3000字会计论文,急求一篇关于出纳的毕业综合实践报告(毕业论文),会计专业的毕业论文怎么写啊题目什么的最好选什么。提供一些会计毕业论文的选题方向,供参考。会计方面(含会计理论、财务会计、成本会计

资讯

p2p毕业论文

阅读(107)

本文主要为您介绍p2p毕业论文,内容包括有关p2p网贷的论文要怎么写,本科毕业论文《互联网金融监管问题研究—以p2p网络借贷为例》大佬,金融专业,毕业论文写什么好,最好有题目。对等网络(Peer to Peer,简称P2P)又称点对点技术,是无中心服务器、依

资讯

会计毕业论文文献

阅读(94)

本文主要为您介绍会计毕业论文文献,内容包括会计专业毕业论文需要什么参考文献,会计论文参考文献5个,会计论文参考文献。原发布者:yyz926098136会计毕业论文参考文献邓春华,《财务会计风险防范》,中国财政经济出版社,2001年版。2、王春峰,《金融

资讯

数学毕业论文范文

阅读(93)

本文主要为您介绍数学毕业论文范文,内容包括数学毕业论文怎么写,数学毕业论文怎么写,数学论文怎么写。浅谈数学中的研究性学习 (转,供参考)找个自己感兴趣的题目去写,参考范文! 现代社会知识更新的速度不断加快,在高中阶段,对学生传授的知识

资讯

南京师范大学毕业论文

阅读(88)

本文主要为您介绍南京师范大学毕业论文,内容包括跪求:南师大的本科毕业论文答辩难吗,不过的人多吗,南京师范大学毕业论文开题报告查重吗,南师大的本科毕业论文要被检测吗。一般不会,但是有补答,也就是二辩的可能。论文检测没通过的,会延迟答辩,

资讯

毕业论文题目翻译

阅读(96)

本文主要为您介绍毕业论文题目翻译,内容包括英语专业毕业论文题目,翻译方向,毕业论文题目翻译求翻译,毕业论文题目翻译。提供一些英语专业翻译方向的论文题目,供参考。商务合同英汉互译技巧英文品牌汉译知识对于翻译的重要性中英文化差异及

资讯

红楼梦毕业论文

阅读(87)

本文主要为您介绍红楼梦毕业论文,内容包括红楼梦论文2000字以上,求一篇3000字的关于《红楼梦》的论文,想写有关《红楼梦》的论文,有什么好的选题或角度比较。论《红楼梦》的思想性 这里要谈的,是曹雪芹《红楼梦》的思想性;也就是要排除开现在

资讯

计算器的毕业论文

阅读(88)

本文主要为您介绍计算器的毕业论文,内容包括计算机论文范文3000字,计算机毕业论文1500字以上,求一篇计算机毕业论文10000字左右。毕业论文是教学科研过程的一个环节,也是学业成绩考核和评定的一种重要方式。毕业论文的目的在于总结学生在校