1.毕业论文spss不会用,求大神指导
你要先有论文的目的和分析思路,然后根据目的的论文和分析思路,确定需要收集的数据和类型,最后才考虑 应该用spss什么方法来实现。
下面是我自己写的一个 带数据分析的论文写作指导首先,我要说明这里的指导并非常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作,其中涉及到有医学类、护理类、人文社科类、教育类、经济学类、心理学类等,单凡需要用到数据分析的论文。
因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。很多论文的核心部分都包括数据分析,而统计学也应该是所有学科应该学习的一门重要课程,但是恰恰相反,很多学科只是把统计学和数据分析作为一项选修甚至不重要的课程对待,这样导致学生在最后做论文时完全不懂。
而在这种情况下,很多学生因为对数据分析的一窍不通,导致论文从开始的设计到后续的数据收集、整理等都会出现问题,最终导致分析出问题。因此,在对数据分析一窍不通的情况下,应该如何从头构建论文及写作呢?很多论文虽然数据分析部分是核心,但是不管哪种论文的写作,都脱离不了论文的框架。
因此,具体的过程应该如下:首先是选题,当然很多时候是导师直接给选题,这个没有太多讨论。其次是选题确定后,马上要做的不是想我应该怎么去写作,或者在哪抱怨“哎~~郁闷,完全不知道怎么写嘛”。
而是先通过文献查找,看前人在这个选题方面已经做了哪些研究,都是如何做的。通过查找文献找到跟选题有关的资料,然后对这些资料进行整理,整理不需要计较参考文献的结论和数据细节等,而是要把每篇文献的研究目的、采用的研究方法、采用的分析方法整理出来。
当然参考文献中的分析方法你可能还完全不懂,但是没关系,你先把这些参考文献中使用的分析方法全部罗列出来,如线性回归、方差分析、均值t检验、logistic回归等,把这些文献中常用的统计方法罗列出来,你需要弄清楚对应关系,即每种分析方法是用来支持和实现什么样的研究目的,以及能够得出什么样的结论,认真阅读文献就能实现这一步。第三.通过上一步,你应该朦胧的知道你选题相关的参考文献中常用的统计方法名称,以及这些统计方法能够帮助实现哪些目的,或者得出什么结论,同时也不会对自己的选题那么恐惧和迷茫了,因为可能你的选题已经有前人做过了,你的论文只是“复制”一遍而已了,我说的复制是重复一遍前人的研究。
在这种情况下,可以构思下自己的选题,这一步属于纯理论层面的,你需要将自己的思路具体化,比如要实现什么目的,很自然的需要什么数据分析方法也就能确定了。当然很多论文会预先设计一系列待验证的假设,也是在这一步完成,因为你找到的文献中可能会存在矛盾的结论,可能会存在一些你认为的研究缺陷(文献看多了,自然自己就会有想法出来了),提出自己的一系列假设,能够很清楚的指导后面的数据收集和分析。
第四.选题、假设还有研究方法这些经过前面几步都能确定了,接下来就是要考虑具体研究和收集数据的环节了。这个环节最重要的也是首要的是弄清楚你的数据应该是什么类型的,通过哪种方法来获取。
其实也容易了,因为前面你已经确定了统计分析方法,而每种方法有它特定的数据类型要求,比如是分类数据(如性别、民族、年级等)、比如连续性数据(如年龄、身高、体重、温度、长度、距离等)。分类数据简单通俗点的理解就是这些数字本身是没有意义的,是人为赋予它一定的含义,这些数据之间不存在连续性,且加减乘除没有意义,而连续性数据是数据本身有意义,且能够进行一些加减乘除运算。
确定了所需要的数据类型,就大致能够知道在数据收集时,应该注意的问题。比如一份问卷调查,其中应该如何设计问题也就大致清楚了,通常问卷设计时就要考虑两种数据类型的问题,因为不同的选项设计会导致不同的数据类型。
如你设计一个问题的答案选项是“有/没有”、“是/否”这种是属于分类数据,如果你的答案选项是李克特量表式“非常满意----非常不满意”这种,在处理时可以按照分类数据,只能统计出一些百分比,也可能将其按照连续数据如12345打分形式,这样可以求均值,可以做很多其他多元统计分析。因此这一步确定数据类型很关键,如果数据类型弄错的话,则收集的数据完全无用。
第五.具体收集数据过程,不细说了,收集回来之后就是数据的录入。记住一定要录入原始的数据,而不是经过加减整理汇总后的数据。
数据录入格式也是有要求的,一般大致同样的情况下,都是一行代表一个个案或者一份问卷的数据,而一列对应表示的是问卷中的一个问题,即变量。因此数据录入完成后,应该是有多少样本数据,就有多少行,数据中包含多少个指标,那就有多少列。
第六.这一步才是你应该开始头疼的数据分析不会了怎么办。因为到这里才开始是数据的具体。
2.求一篇spss论文
SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H. Nie、C. Hadlai (Tex) Hull 和 Dale H. Bent于1968年研开发成功,同时成立了SPSS公司,并于1975年成立法人组织、在芝加哥组建了SPSS总部。1984年SPSS总部首先推出了世界上第一个统计分析软件微机版本SPSS/PC+,开创了SPSS微机系列产品的开发方向,极大地扩充了它的应用范围,并使其能很快地应用于自然科学、技术科学、社会科学的各个领域。世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价。
2009年7月28日,IBM公司宣布将用12亿美元现金收购统计分析软件提供商SPSS公司。具体的收购方式为,IBM将以每股50美元的价格进行收购,该交易将全部以现金形式支付,预计于年底前完成。SPSS称将在2009年10月2日召开特别股东大会,投票表决有关将该公司出售给IBM的交易。如今SPSS已出至版本20.0,而且更名为IBM SPSS。
迄今,SPSS公司已有40余年的成长历史。
SPSS操作界面
SPSS是世界上最早采用图形菜单驱动界面的统计软件,它最突出的特点就是操作界面极为友好,输出结果美观漂亮。它将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。用户只要掌握一定的Windows操作技能,粗通统计分析原理,就可以使用该软件为特定的科研工作服务。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口,用户只需在菜单中选好各个选项,然后按“粘贴”按钮就可以自动生成标准的SPSS程序。极大的方便了中、高级用户。
SPSS图表制作
SPSS for Windows是一个组合式软件包,它集数据整理、分析功能于一身。用户可以根据实际需要和计算机的功能选择模块,以降低对系统硬盘容量的要求,有利于该软件的推广应用。SPSS的基本功能包括数据管理、统计分析、图表分析、输出管理等等。SPSS统计分析过程包括描述性统计、均值比较、一般线性模型、相关分析、回归分析、对数线性模型、聚类分析、数据简化、生存分析、时间序列分析、多重响应等几大类,每类中又分好几个统计过程,比如回归分析中又分线性回归分析、曲线估计、Logistic回归、Probit回归、加权估计、两阶段最小二乘法、非线性回归等多个统计过程,而且每个过程中又允许用户选择不同的方法及参数。SPSS也有专门的绘图系统,可以根据数据绘制各种图形。
SPSS for Windows的分析结果清晰、直观、易学易用,而且可以直接读取EXCEL及DBF数据文件,现已推广到多种各种操作系统的计算机上,它和SAS、BMDP并称为国际上最有影响的三大统计软件。在国际学术界有条不成文的规定,即在国际学术交流中,凡是用SPSS软件完成的计算和统计分析,可以不必说明算法,由此可见其影响之大和信誉之高。最新的12.0版采用DAA(Distributed Analysis Architecture,分布式分析系统),全面适应互联网,支持动态收集、分析数据和HTML格式报告。
SPSS输出结果虽然漂亮,但是很难与一般办公软件如Office或是WPS2000直接兼容,如不能用Word等常用文字处理软件直接打开,只能采用拷贝、粘贴的方式加以交互。在撰写调查报告时往往要用电子表格软件及专业制图软件来重新绘制相关图表,这已经遭到诸多统计学人士的批评;而且SPSS作为三大综合性统计软件之一,其统计分析功能与另外两个软件即SAS和BMDP相比仍有一定欠缺。
虽然如此,SPSS for Windows由于其操作简单,已经在我国的社会科学、自然科学的各个领域发挥了巨大作用。该软件还可以应用于经济学、生物学、心理学、地理学、医疗卫生、体育、农业、林业、商业、金融等各个领域。
3.我需要SPSS统计分析实例,是要写500字左右论文的
运用逐步回归法分析影响上海银行存款的因素1.目的和意义在现代商品经济社会中,人们的工作与生活已经离不开货币。
在生活中人们所需的各种商品,都需要用货币去购买;人们所需的各种服务,也需要支付货币来获得;人们劳动工作的所获得的报酬——工资,也是用货币支付的;人们为了种种目的,要积累财富,保存财富,采用的主要方式是积攒货币、到银行储蓄。除个人外,企业、行政事业部门的日常运行同样也离不开货币。
财政收支也都是用货币进行的。可见,货币已经融入了并影响这经济运行和人们的生活。
作为经营“货币”这种商品的银行的功能是办理各种存款(也称为负债业务)、放款和汇兑业务,其中商业银行所吸收的各种存款(活期、定期、储蓄)约占银行资金来源的70%~80%,为银行提供了绝大部分的资金来源,并为实现银行各职能活动提供了基础。所以说,银行存款对银行本身的生存和发展有着重要意义,除此之外,银行存款也能反映出一个特定时期人们的生活水平以及经济发展的水平。
因此对上海的银行存款的分析是非常重要且必要的。本文将介绍运用SPSS11.5统计分析软件中的逐步回归法对影响上海银行存款的因素进行分析研究并建立模型,为相关专业人士的决策提供一定参考。
2.影响银行存款的因素分析存款作为银行吸收资金来源的主要业务,其之影响因素非常的多。从中我选取了10个主要因素的(1951年至2000年)数据运用SPSS的逐步回归法分析和研究它们对上海银行存款的影响程度。
这10个因素分别是全市居民储蓄(亿元)、从业人数(万人)、全市居民消费水平(元/人)、全市银行贷款(亿元)、全社会固定资产投资总额(亿元)、职工工资总额(亿元)、职工劳保福利费用(万元)、社会消费品零售总额(亿元)、外贸出口商品总额(亿美元)、全市财政收入(亿元)。上海全市银行存款及影响其的10个因素的1951年至2000年的数据见下表2.1。
表2.1上海全市银行存款数据(1951年~2000年)年份 全市银行存款(亿元) 全市居民储蓄(亿元) 从业人数(万人) 全市居民消费水平(元/人) 全市银行贷款(亿元) 全社会固定资产投资总额(亿元) 职工工资总额(亿元) 职工劳保福利费用(万元) 社会消费品零售总额(亿元) 全市财政收入(亿元) 外贸出口商品总额(亿美元)1964 33.29 8.64 438.31 270 45.27 7.22 19.40 33117 26.55 73.35 6.521965 37.66 9.98 460.76 276 49.77 7.75 20.07 33819 27.13 83.18 7.651966 40.18 10.68 462.62 298 62.52 7.23 19.74 34536 28.72 92.49 8.741967 43.58 10.60 478.39 300 71.82 4.61 20.22 35268 30.78 73.97 8.421968 50.25 10.56 516.44 293 85.32 4.58 19.75 36016 29.94 83.98 8.491969 57.42 10.18 536.70 309 82.12 7.45 21.06 36780 32.57 102.30 8.761970 142.41 10.47 540.87 304 76.05 10.90 20.63 37560 31.85 114.02 8.671971 155.28 11.29 560.29 318 88.74 11.36 21.14 38356 32.91 123.53 9.811972 167.81 12.51 576.74 334 99.41 13.23 22.08 39169 36.15 129.11 13.301973 175.86 13.13 589.52 357 112.66 16.24 22.37 39999 39.79 138.18 23.161974 178.21 13.85 610.16 380 125.13 22.43 22.80 40847 44.06 143.04 24.391975 185.09 14.66 646.88 397 129.61 32.53 23.49 41737 47.71 147.11 22.201976 182.60 15.37 669.56 408 133.97 23.96 24.79 46531 49.98 144.42 19.781977 205.30 16.00 679.65 411 143.19 18.00 24.97 49797 49.28 159.91 22.211978 242.93 18.18 698.32 442 153.37 27.91 28.12 57424 54.10 190.67 28.931979 267.92 24.88 712.59 527 165.16 35.58 32.73 81664 68.28 192.75 36.751980 291.06 30.20 730.77 582 200.98 45.43 38.10 94004 80.43 198.85 42.661981 148.85 32.92 750.22 638 221.98 54.60 39.59 102061 88.73 204.52 38.071982 170.56 37.94 764.03 640 227.77 71.34 41.34 113909 89.80 200.69 36.051983 190.73 45.97 768.90 688 239.50 75.95 42.91 127679 100.68 204.34 36.481984 222.51 56.10 769.79 789 245.35 91.72 53.72 152282 123.72 215.79 35.871985 261.09 70.09 775.53 1030 306.27 118.56 68.99 190217 173.39 263.86 33.611986 324.81 90.95 782.99 1190 427.66 146.93 83.35 233574 196.84 257.72 35.821987 396.38 120.33 788.12 1298 523.35 186.30 94.78 286323 225.25 241.36 41.601988 419.68 141.21 792.13 1680 576.11 245.27 114.47 391974 295.83 261.69 46.051989 473.73 193.47 784.96 1928 698.71 214.76 131.10 437789 331.38 297.25 50.321990 613.86 252.16 787.72 2009 857.76 227.08 146.78 533797 333.86 284.36 53.211991 769.95 328.22 798.13 2421 1008.82 258.30 172.84 670676 382.06 324.66 57.401992 1051.45 413.09 806.91 2842 1213.32 357.38 217.21 804903 464.82 340.13 65.551993 1495.06 578.39 787.25 4162 1605.57 653.91 279.33 1038701 624.30 439.53 73.821994 2247.56 975.95 786.04 5343 1966.96 1123.29 357.89 1241344 770.74 615.91 90.771995 3056.76 1。
4.有谁知道SPSS的相关性分析,可以教下吗
其实这个很简单,我想给你举个例子吧。
比如分析SOD和TEM的相关性,你SOD的数字为1,2,3,4,5;TEM的为2,4,5,6,7.你先把spss打开,在第一列来输入SOD的五个值,在第二列输入TEM的五个值,然后把所有的数值全选源中,点击分析,再选相关,选择相关选项里的双变量,点击以后出现对话框,把第一列和第二列都选入右边变量对话框,另外的bai几个打钩的选项都不用改,再按选项按钮,统计量下选择均值和标准差,按继续,点确du定就可以了。会出现两个对话框,第一个是你SOD和TEM的均值和标准差,第二个框zhi就是你要的相关系数了,照我这个数值算出来相关系数应该是0.986,P=0.002。
5.毕业论文要做SPSS分析,有一个具体模型,要研究调节变量对因变
首先来回答你的问题:
1. 非标准化系数就是回归方程的斜率,表示每个自变量变化1个单位,因变量相应变化多少个单位,该系数与自变量所取的单位有关,一般不用来衡量自变量的影响力大小。
2. 标准化系数消除了自变量单位的影响,其大小可以衡量每个自变量对因变量的影响力之大小,一般来说,标准化系数的绝对值越大,该自变量对因变量的影响力就越大。
其次,大致给你提出点分析和建议(2-4条的前提是样本量够大):
1. 样本太小,只有5组数据,得到的结果往往不可靠,强烈建议增大样本量,否则统计分析可能毫无意义,甚至造成错误。
2. 从自变量t检验结果来看,逗其来石含量地与逗颈部密度地对应的sig值均超过了0.05,用统计专业的话来说,这意味着逗在0.05的显著性水平下,这两个自变量与因变量不显著相关地,通俗的说,在自变量平均孔径存在的前提下,这两个变量基本可以排除出方程了。
3. 从偏相关性来看,3个自变量之间有极强的相关性(或共线性),因为强相关的自变量往往会导致不合理的统计分析结果,因此理论上他们不可以一起放入方程。
4. 建议你在做多元线性回归分析的时候采用多元逐步回归,这样可以按自变量影响力的大小自动排除强相关的变量,也可以自动排除对因变量无显著影响的自变量,从而得到更可靠的分析结果。