数学模型方面的毕业论文(求数学建模论文)

1.求数学建模论文

数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)

关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录1。问题重述 2。

问题分析3。模型假设与约定4。

符号说明及名词定义5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);6。

进一步讨论(参数的变化、假设改变对模型的影响)7。模型检验 (使用数据计算结果,进行分析与检验)8。

模型优缺点(改进方向,推广新思想)9。参考文献及参考书籍和网站10。

附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)小经验:1。

随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。

2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。

3。要有自己的特色,闪光点。

如何撰写数学建模论文 当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。

事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。 首先要明确撰写论文的目的。

数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。

其次,要注意论文的条理性。 下面就论文的各部分应当注意的地方具体地来做一些分析。

(一) 问题提出和假设的合理性 在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。

历届数学建模竞赛的试题可以看作是情景说明的范例。 对情景的说明,不可能也不必要提供问题的每个细节。

由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。

这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面: (1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。

(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。 (3)假设应验证其合理性。

假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。

(二) 模型的建立 在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。

总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。

在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。

基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。 有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。

这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。 在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。

结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。

(四) 模型的讨论 对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。

或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。

有时不妨拓广思路,。

2.数学建模的论文

售书问题优化模型 摘要 优化问题是工程技术、经济管理和科学研究等领域重做常见的一类问题,在解决极值问题中起着重要作用。

零一规划也是常用的数学工具,能够有效的表示事物的有效性。本文是以一极具有实际意义的问题,而随着信息时代的发展,大学生接受知识的途径多种多样,报纸、杂志、图书一直赢得大学生不同程度的青睐,而且出现了电子图书这个时代的产物,对于这个实际意义较大的问题就应有简单易懂的模型,让人看起来比较容易接受。

考虑到建立销售点,使它供书的人数达到最大,那就要在条件约束下建立优化模型,而选择两地之间是否有销售的关系为他们的决策变量,那样就使人易懂,易于理解。通过建立线性规划模型,并应用Linggo软件得到最优解,B和E之间建立代售关系即在B(E)建立代售点并向E(B)售书,D和G之间建立代售关系即在D(G)建立代售点并向G(D)售书,可是大学生的人数最大,为177千人。

最优解可以有多种选择方法,这就有选择的灵活性。本模型适用于只考虑人数最大的地址的选择,具有较强的实用性和普遍性。

关键字 售书问题 优化模型 零一规划 Linggo1.问题的重述 一家出版社准备在某地向七个区大学生供应图书,每个区的大学生数量如图所示(单位:千人),出版社准备在该市设立两个图书代理销售点,每个代理点只能想该地区和一个相邻的地区售书,出版社知道售书覆盖的人群越大,所获得的利润也就也大,所以出版社要选择两个恰当的代理销售点使覆盖的人群最大。现在所要解决的是选在合适的代理销售点。

2.问题分析 书是人们进步的阶梯,售书问题普遍受到人们的关注。近年来随着科学技术的发展,电子图书、网上书城等的出现,人们阅读的方式越来越多,而书的销售问题也越来越受销售商的关注。

如何选择待销售点才能使卖出的书最多,销售商获得的利益最大,成为问题的关键所在。在许多候选地区中选择最优的地区,制定最优的规划方案,显然必须建立优化模型,每个地区都选与不选的可能性,这就必须用到0—1规划模型,立两个销售代理点, 在满足以下的条件的情况下,要想得到一个最优计划,出版社就需要设计一个合理有效的投资方案:1.只能建立两个销售代理点。

2.每个销售代理点只能向本区和一个相邻区的大学生售书 在上述要求中,将每两个相邻地区之间连线表示该地区建立售代关系,这种售代关系据有建立与不建立两种选择,显然每个地区只能选择一个销售或者代理,最优方案就是选择权值最大与次大的连线,将上述方案限制转化为约束条件,并使目标函数,约束条件决策标量转化为数学符号,利用LINGGO 软件来求最优解接,3符号的说明 符号表示 符号说明 A 34千人的地区 B 29千人的地区 C 42千人的地区 D 21千人的地区 E 56千人的地区 F 18千人的地区 G 71千人的地区 x1 AB两地区之间建立代售关系 x2 AC两地区之间建立代售关系 x3 BE两地区之间建立代售关系 x4 BD两地区之间建立代售关系 x5 CD两地区之间建立代售关系 x6 DG两地区之间建立代售关系 x7 DF两地区之间建立代售关系 x8 DE两地区之间建立代售关系 x9 EF两地区之间建立代售关系 x10 FG两地区之间建立代售关系 X11 BC两地区之间建立代售关系 Q 所能供应的大学生的数量4.问题假设 选择代理销售点时,只考虑该地区总人数以及相邻地区,对人员的迁入迁出,人员的消费能力,人们的需求不予考虑;1、只有两个销售代理点,且每个销售代理点只能向该区和他临近的去售书。2、7个销售区中没有人员的流动3、书的供应量远远满足学生的需求4、销售代理点向两个地区的学生销售书的价格相同。

5、不考虑邻区因学生买书的路费问题而减少书的购买。6、售书多少与人数多少成正比。

7、人人的消费能力是相等的。5.模型的建立 决策变量:设在ABCDEFG中的某两地之间代售关系Xi(i=1,2,3…10).Xi=1表示在其建立代售关系。

Xi=0表示没有建立代售关系 目标函数:所能供应的大学生的数量Q千人;则Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10+71*x11; 约束条件1.只能建立两个销售代理点。x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2;2.与A建立代售关系只能有一个即 x1+x2与B建立代售关系只能有一个即 x2+x5+x11与C建立代售关系只能有一个即 x1+x3+x4+x11与D建立代售关系只能有一个即 x4+x5+x6+x7+x8与E建立代售关系只能有一个即 x3+x8+x9与F建立代售关系只能有一个即 x7+x9+x10与G建立代售关系只能有一个即 x6+x10综上所述:Max Q=63*x1+76*x2+85*x3+50*x4+63*x5+92*x6+39*x7+77*x8+74*x9+89*x10; x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=2; x1+x2x2+x5+x11x1+x3+x4+x11x4+x5+x6+x7+x8x3+x8+x9x7+x9+x10x6+x106.模型的求解 在lingo中输入以下代码,见附录1.通过运行LINDO教学软件,我们可以得到该售书问题的最优解,即建立代售关系的最优方案,其截图为: Objective value: 177.0000 Variable Value Reduced Cost X1 0.000000 22.00000 X2 0.000000 9.000000 X3 1.000000 0.000000 X4 0.000000 38.00000 X5 0.000000 25.00000 X6 1.000000 0.000000 X7 0.000000 49。

3.求关于数学建模的1500字以上的优秀论文

数学建模论文范文--利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。

强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。

本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。

数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。

必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。

可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。

对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。

要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。

阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。

例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。

数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。

结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。

有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,。

4.数学建模论文.(600字以上)

利用数学建模解数学应用题 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。

强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。

本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。

数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。

必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。

可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。

对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。

要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。

阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。

例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。

数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。

结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。

有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力 摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力。

5.优秀数学建模论文

数学建模论文范文--利用数学建模解数学应用题数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。

强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。

本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。

数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。

第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。

必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型第二层次:直接建模。

可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。第三层次:多重建模。

对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。第四层次:假设建模。

要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。

三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。3.1提高分析、理解、阅读能力。

阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。

3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。

例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)53.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。

数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。

结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。

有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。

利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

加强高中数学建模教学培养学生的创新能力摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,。

6.数学建模优秀论文

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入 、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是 ,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。

这个建立 的全过程就称为 。目录 背景数学 的意义数学建模 应用 准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用 起源进入 大学 在中国 大学生 章程(2008年) 第四届 数学建模资料竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书 数学建模题目两项题 四项题 数学建模相关数学建模的意义 数学建模经验和体会 最新进展 数学建模应当掌握的十类算法背景 数学 数学建模 数学建模的意义 数学建模 模型 过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用 起源 进入 大学 在中国 大学生 全国大学生 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书 数学建模题目 两项题 四项题 数学建模相关 数学建模的意义 数学建模经验和体会 最新进展数学建模应当掌握的十类算法展开 编辑本段背景 数学 近半个多世纪以来,随着 的迅速发展,数学的应用不仅在工程技术、等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代 的重要组成部分。

数学建模 数学模型(Mathematical Model)是一种模拟,是用 、数学式子、程序、图形等对实际课题 的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用 在科技和 解决哪类实际问题,还是与其它学科相结合形成 ,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。

数学建模和 在 的作用可谓是 。 数学是研究 和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。

数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从 以来,随着 的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在 这个 ,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的 、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。

培养学生 的意识和能力已经成为 的一个重要方面。编辑本段数学建模的意义 数学建模 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

数学建模就是用 描述实际现象的过程。这里的实际现象既包涵具体的 比如 现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。

这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让 家(指只懂数学不懂数学在实际中的应用的 )变成 ,,甚至 等等的过程。

数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽 式存在的,但它和真实的事物有着本质的区别。

要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可 ,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。

使用 描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

模型 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立 的过程,是把 的实际问题简化、抽象为合理的数学结构的过程。

要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的 ,建立起反映实际问题的 ,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的 ,敏锐的 和想象力,对实际问题的浓厚兴趣和广博的知识面。

数学建模是 与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学 转化的主要途径,数学建模在 发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次 ,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛。

7.谁能发给我数学建模在生活中的运用毕业论文啊

论数学建模在经济学中的应用 【摘 要】当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。

【关键词】经济学 数学模型 应用 在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。

一、数学经济模型及其重要性 数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。

由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。

要看自己比较熟悉精通哪门学科,充分发挥自己的特长。 数学并不能直接处理经济领域的客观情况。

为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。

或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。

数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。

如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。 二、构建经济数学模型的一般步骤 1.了解熟悉实际问题,以及与问题有关的背景知识。

2.通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。

一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。

3.使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。4.运行所得到的模型。

把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。

我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。

问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。

重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。

三、应用实例 商品提价问题的数学模型: 1.问题 商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。

这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。

下面研究在销售总收入有限制的情况下.商品的最高定价问题。 2.实例分析 某商场销售某种商品单价25元。

每年可销售3万件。设该商品每件提价1元。

销售量减少0.1万件。要使总销售收入不少于75万元。

求该商品的最高提价。 解:设最高提价为X元。

提价后的商品单价为(25+x)元 提价后的销售量为(30000-1000X/1)件 则(25+x)(30000-1000X/1)≥750000 (25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。

四、数学在经济学中应用的局限性 经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能阉割经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。

因为: 1.经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。

经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。

把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。

2.经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经。

8.求一篇对数学建模认识的论文 1000字左右

数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关的。

作为用数学方法解决实际问题的第一步,数学建模自然有着与数学同样悠久的历史。两千多年以前创立的欧几里德几何,17世纪发现的牛顿万有引力定律,都是科学发展史上数学建模的成功范例。

从自身经历谈数学建模,我觉得越是走近它,越是容易被它深深地吸引。参加比赛,虽然很累,但是在短短的日子里,得到的要比付出的多很多,这也就使我们感到无比的满足和充实。

谈及获奖的心得,我想主要有以下几个方面: 首先,赛前的准备。万事预则立,不预则废,所以一个好的开始至关重要。

在这里我要感谢学校跟师兄师姐,每年比赛前都开办赛前培训班,为更多的同学介绍经验,讲解数学建模的基本思想和常用模型。我们都具备数学的基本常识,但是要用模型的思想来解决问题,脑子里没有几个模型是不可能写出好论文的。

有了好的环境,更重要的就是参考书了,我们的脑子再好用也记不住那么多的公式和模型,准备几本好的参考书是必须的。赛前争取多学习几篇往届的获奖优秀论文,总结一下论文中用到的算法和模型,到比赛的时候看看有没有现成的例子可以利用。

历届的试题和论文在数模论坛上都有下载。 其次,多利用网络。

由于建模比赛是半封闭式的,所以在比赛过程中应尽可能多的利用网络来查阅文献资料和交流信息,像是学校的电子图书馆、QQ群、论坛等。在与别人交流讨论的过程中,别人不经意的一句话,可能就会使你茅塞顿开,想出一些新的思路,当然,分享并不代表分享所有的东西,思想可以交流,有时结论也可以相互对照,但是具体到过程就要保密了,不过也不要因为此就过于保守,毕竟交流是相互的,要相信,付出就会有回报。

第三,比赛中的心态。网络会给我们提供信息,但同时也会给我们带来压力,就我们自己来说,在本次比赛中,当得知别人第一问的结论跟我们相去甚远的时候,我们紧张了一段时间,因为比赛时间已过半,我们却连第一问还没有解决,且落后别人很多。

这时要告诉自己,现在最重要的是要解决问题,踏踏实实地做好自己的题目,而不是跟时间比,更不要跟其他队伍比。平静下来后,我们最终得出了比其他组更优的解, 第四,队员的分工。

一个队伍三个队员,不需要每个人都是高手,但一定要各有所长。我们的分工是一个调试程序,一个主攻算法,一个专门写作。

但是分工并不是各干各的,一定要相互协作,多讨论多商量,让比赛在紧凑和谐的氛围中进行。 最后,简单说一下论文的写作,论文的大体框架在此我就不赘述了。

首先,论文一定要有条理性,思路清晰,格式简洁,否则再好的内容也没有评委喜欢去评阅;其次,由于这是数学建模比赛,逻辑性要强,定义、定理、命题等的证明,公式的推导,算法的递推一定要有理可据;再就是论文中一定要有数学模型,将实际问题抽象为一个模型是建模的第一步,也是最重要的一步;比赛过程中的每一种解法都不要轻易的舍弃掉(除非解法是完全错误的),有必要可以一并写在论文中,作为模型假设也好,作为算法论证也好,至少可以让老师们知道你曾经这样考虑过,说不定这也是一个好的解法,只是没有走到底。 数学是一门深奥的学科,数学建模拉近了我们和数学的距离,让数学走进我们的学习生活, 让一切变得更加简单、更加有趣。

9.数学建模论文范文怎么写

数学建模论文写作 一、写好数模答卷的重要性 1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。

2. 答卷是竞赛活动的成绩结晶的书面形式。 3. 写好答卷的训练,是科技写作的一种基本训练。

二、答卷的基本内容,需要重视的问题 1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语) 1)问题重述。

2)问题分析。 3)模型假设。

4)符号说明。 5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。

6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。) 7)进一步讨论(结果表示、分析与检验,误差分析,模型检验) 8)模型评价(特点,优缺点,改进方法,推广。)

9)参考文献。 10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。)

3. 要重视的问题 1)摘要。 包括: a. 模型的数学归类(在数学上属于什么类型); b. 建模的思想(思路); c. 算法思想(求解思路); d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。

▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。

2)问题重述。 3)问题分析。

因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。 5)模型假设。

根据全国组委会确定的评阅原则,基本假设的合理性很重要。 a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。

6) 模型的建立。 a. 基本模型: ⅰ)首先要有数学模型:数学公式、方案等; ⅱ)基本模型,要求完整,正确,简明; b. 简化模型: ⅰ)要明确说明简化思想,依据等; ⅱ)简化后模型,尽可能完整给出; c. 模型要实用,有效,以解决问题有效为原则。

数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。 ⅰ)能用初等方法解决的、就不用高级方法; ⅱ)能用简单方法解决的,就不用复杂方法; ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。

d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在: ▲ 建模中,模型本身,简化的好方法、好策略等; ▲ 模型求解中; ▲ 结果表示、分析、检验,模型检验; ▲ 推广部分。

e.在问题分析推导过程中,需要注意的问题: ⅰ)分析:中肯、确切; ⅱ)术语:专业、内行; ⅲ)原理、依据:正确、明确; ⅳ)表述:简明,关键步骤要列出; ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。 7)模型求解。

a. 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 b. 需要说明计算方法或算法的原理、思想、依据、步骤。

若采用现有软件,说明采用此软件的理由,软件名称。 c. 计算过程,中间结果可要可不要的,不要列出。

d. 设法算出合理的数值结果。 8) 结果分析、检验;模型检验及模型修正;结果表示。

a. 最终数值结果的正确性或合理性是第一位的; b. 对数值结果或模拟结果进行必要的检验; 结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 c. 题目中要求回答的问题,数值结果,结论,须一一列出; d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; e. 结果表示:要集中,一目了然,直观,便于比较分析。

▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲ 求解方案,用图示更好。

9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。

10)模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。

推广或改进方向时,不要玩弄新数学术语。 11)参考文献 12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。

主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题; 问题以怎样的方式回答――结果以怎样的形式表示; 每个问题要列出哪些关键数据――建模要计算哪些关键数据; 每个量,列出一组还是多组数――要计算一组还是多组数。

四、答卷要求的原理 1. 准确――科学性; 2. 条理――逻辑性; 3. 简洁――数学美; 4. 创新――研究、应用目标之一,人才培养需要; 5. 实用――建模、实际问题要求。 五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际; 模型、方法、结果要易于理解,便于实际应用;站在。

10.关于数学建模的论文

摘 要

在摘要的写作中一定要花5个小时以上,反复修改,一定要修改修改再修改,修改个10几稿才能过关。在摘要中一定要突出方法,算法,结论,创bai新点,特色,不要有废话,一定要突出重点,让人一du看就知道这篇论文是关于什么的,做了什么工作,用的什么方法,得到了什么效果,有什么创新和特色。一定要精悍,字字珠玑,闪闪发光,一看就被吸引。这样的摘要才是zhi成功的。字数约500-700字。

一、问题重述:

二、模dao型的假设

三、问题分析:

四、定义和符号说明

五、模型建立与求解

六、模型的评价与推广

参考文献

[1 ] 周义仓,赫孝良.数学建模实验.西安:西安交通大学出版社,1999数学建

[2]白其峥.数学建模案例分析.北京:海洋出版社,2000

[3]昊建国.数学建模案例精编.北京:科学出版社,2005

[4]叶其版孝.大学生数学建模竞赛辅导教材.长沙:湖南教育出版社,1998

[5]刘静安,盛春磊,朱英.铝材在包装、容器工业上的开发与应用.四川有色金属 2006,6

[6]韩向东,李志见.铝制易拉罐成形工权艺及模具.模具工业.2004,4

[7]江门一中跨班研究组,数学主页易拉罐设计,

数学模型方面的毕业论文

转载请注明出处众文网 » 数学模型方面的毕业论文(求数学建模论文)

资讯

关于米芾的毕业论文(浅谈米芾行书与王羲之书风之关系)

阅读(80)

本文主要为您介绍关于米芾的毕业论文,内容包括米芾的书法“率意为之”,特别喜欢他的字,最近需要些一篇论文,米芾的书法“率意为之”,特别喜欢他的字,最近需要些一篇论文想研,浅谈米芾行书与王羲之书风之关系。米芾作为宋代行书的代表,书风直

资讯

南中医硕士毕业发表论文(研究生期间发大量的论文有必要吗)

阅读(94)

本文主要为您介绍南中医硕士毕业发表论文,内容包括南京中医药大学硕士学位证书,研究生发表论文分几个等级|硕士论文发表,硕士研究生是不是一定要发表文章才能毕业。其实研究生不必迷茫,一般论文要写跟自己专业相关的会得心应手,所以不用太害

资讯

历史学专业毕业论文范文(3000字的历史学论文作业)

阅读(91)

本文主要为您介绍历史学专业毕业论文范文,内容包括3000字的历史学论文作业,我是历史系大四的学生,我要准备毕业论文了,求选题,历史论文1000字。弘扬传统美德,提高民族素质 现代化建设与提高中华民族的素质,随着改革开放的深入,已成为一个十分

资讯

毕业论文和写八股文一样(现代文章与八股文有何相似之处)

阅读(344)

本文主要为您介绍毕业论文和写八股文一样,内容包括毕业论文和八股文的区别在哪,毕业论文和八股文的区别在哪大神们帮帮忙,现代文章与八股文有何相似之处。在漫长的封建社会,各个朝代选拔人才的方式各不相同,真正制度化的选拔人才的方式是科举

资讯

毕业论文聊斋志异(有关于《聊斋志异》的论文)

阅读(85)

本文主要为您介绍毕业论文聊斋志异,内容包括有关于《聊斋志异》的论文,急求一篇聊斋志异论文,跪求啊,急求一篇论文(聊斋)。论《聊斋志异》中的女性形象 我国著名作家冰心有句名言:如果没有女性,我们将失掉生活百分之五十的真,百分之六十的善,百分

资讯

历史学毕业论文如何选题(历史学类专业的论文如何进行选题)

阅读(138)

本文主要为您介绍历史学毕业论文如何选题,内容包括历史学类专业的论文如何进行选题,史学论文应该怎样选题,浅谈史学论文选题方法1500。在论文写作的时候,选择好论文选题就算成功了一半,能顺利完成论文写作。历史学类专业的论文如何进行选题?英

资讯

湘夫人毕业论文(屈原笔下的湘夫人作文)

阅读(84)

本文主要为您介绍湘夫人毕业论文,内容包括屈原笔下的湘夫人作文,分析《湘夫人》一诗的思想内容与艺术特性,结合作品《湘夫人》,论述屈原诗歌的浪漫主义特色。屈原虽然文华四射,才情孤高,却对官场潜规则一无所知,一味的恃才傲物,结果遭到政敌谗

资讯

毕业论文问卷还是量表(量表和问卷是什么区别呀)

阅读(116)

本文主要为您介绍毕业论文问卷还是量表,内容包括本科的毕业论文一定要用问卷调查吗,急在做毕业论文,设计的问卷是量表,想用SPSS做分析,不知道用,一名本科生,写毕业论文的时候,可以采用别人所做过的问卷量表吗。量表和问卷主要区别就是严格

资讯

关于蛋挞的毕业论文(关于蛋挞的资料)

阅读(85)

本文主要为您介绍关于蛋挞的毕业论文,内容包括关于蛋挞的资料,蛋挞的资料,关于食品营养的毕业论文。蛋挞,英文叫custard tart,custard是一种用牛奶鸡蛋和糖做成的冻,中国人称其为蛋,tart则取其音。这种蛋挞早在中世纪就

资讯

电大金融本科毕业论文怎么写(电大毕业论文怎么写)

阅读(81)

本文主要为您介绍电大金融本科毕业论文怎么写,内容包括电大毕业论文怎么写,如何写金融学专业毕业论文,谁能教教我金融本科毕业论文怎么写。以金融/会计为例关于选题1.与专业有关金融学专业可以选题的方向有:融资、信贷、保险、银行卡、中间

资讯

河南大学大三毕业论文(2015届河南大学毕业论文字数)

阅读(78)

本文主要为您介绍河南大学大三毕业论文,内容包括2015届河南大学毕业论文字数,河南大学自考本科毕业论文要多少字,河南大学自考学位论文答辩时间流程是什么什么时间办理学位证书。题目:题目应简洁、明确、有概括性,字数不宜超过20个字(不同院校

资讯

关于米芾的毕业论文(浅谈米芾行书与王羲之书风之关系)

阅读(80)

本文主要为您介绍关于米芾的毕业论文,内容包括米芾的书法“率意为之”,特别喜欢他的字,最近需要些一篇论文,米芾的书法“率意为之”,特别喜欢他的字,最近需要些一篇论文想研,浅谈米芾行书与王羲之书风之关系。米芾作为宋代行书的代表,书风直

资讯

历史学专业毕业论文范文(3000字的历史学论文作业)

阅读(91)

本文主要为您介绍历史学专业毕业论文范文,内容包括3000字的历史学论文作业,我是历史系大四的学生,我要准备毕业论文了,求选题,历史论文1000字。弘扬传统美德,提高民族素质 现代化建设与提高中华民族的素质,随着改革开放的深入,已成为一个十分

资讯

毕业论文和写八股文一样(现代文章与八股文有何相似之处)

阅读(344)

本文主要为您介绍毕业论文和写八股文一样,内容包括毕业论文和八股文的区别在哪,毕业论文和八股文的区别在哪大神们帮帮忙,现代文章与八股文有何相似之处。在漫长的封建社会,各个朝代选拔人才的方式各不相同,真正制度化的选拔人才的方式是科举

资讯

毕业论文聊斋志异(有关于《聊斋志异》的论文)

阅读(85)

本文主要为您介绍毕业论文聊斋志异,内容包括有关于《聊斋志异》的论文,急求一篇聊斋志异论文,跪求啊,急求一篇论文(聊斋)。论《聊斋志异》中的女性形象 我国著名作家冰心有句名言:如果没有女性,我们将失掉生活百分之五十的真,百分之六十的善,百分

资讯

本科美术毕业论文选题(美术类的毕业论文题目写什么好喃)

阅读(82)

本文主要为您介绍本科美术毕业论文选题,内容包括美术类的毕业论文题目写什么好喃,关于美术教育的论文题目,帮我想一个美术的论文题目。提供一些美术类的毕业论文题目,供参考。 解读香港设计师李永铨的海报 2、 平面设计中的形态设计 3、 版

资讯

毕业论文的数据可以用什么软件分析(数据分析软件有哪些)

阅读(79)

本文主要为您介绍毕业论文的数据可以用什么软件分析,内容包括数据分析软件,财务管理专业毕业论文用什么软件分析数据,用excel怎么进行论文数据分析。数据分析软件有Excel、SAS、R、SPSS、Tableau Software。Excel为Excel微软办公套装软件的