1.试述细菌对抗菌药物产生耐药性的机制.
细菌对抗菌药物产生耐药性的机制主要有以下几类:
一、钝化酶的产生 耐药菌株通过合成某种钝化酶作用于抗菌药物,使其失去抗菌活性。
1、β-内酰胺酶
对青霉素类和头孢霉素类耐药的菌株产生此酶,可特异的打开药物β-内酰胺环,使其完全失去抗菌活性.分为四类;
2、氨基糖苷类钝化酶
通过磷酸转移酶,乙酰转移酶,腺苷转移酶的作用,使抗菌药物分子结构发生改变,失去抗菌活性。由于氨基糖苷类抗生素结构相似,故有明显的交叉耐药现象;
3、氯霉素乙酰转移酶 该酶由质粒编码,使氯霉素乙酰化而失去活性;
4、甲基化酶
金黄色葡萄球菌携带的耐药质粒产生,使50S亚基中的23SrRNA上的嘌呤甲基化,产生对红霉素的耐药性。
二、药物作用的靶位发生改变
1、链霉素
结合部位是30S亚基上的S12蛋白,若S12蛋白的构型改变,使链霉素不能与其结合而产生耐药性;
2、红霉素
靶部位是50S亚基的L4或L12蛋白,当染色体上的ery基因突变,使L4或L12蛋白构型改变,便会出现对红霉素的耐药性;
3、利福平 作用点是RNA聚合酶的β基因,当其突变时,就产生了耐药性;
4、青霉素
靶部位是细胞膜上的青霉素结合蛋白(PBPs),PBPs具有酶活性,参与细胞壁的合成,是β-内酰胺类抗生素的作用靶位,细菌改变了PBPs的结构,可导致耐药性;
5、喹诺酮类药物
靶部位是DNA旋转酶,当基因突变引起酶结构的改变,阻止喹诺酮类药物进入靶位,可造成喹诺酮类所有药物的交叉耐药;
6、磺胺药 细菌可使药物靶位酶发生改变,使其不易被抗菌药物所杀灭。
三、细胞壁通透性的改变和主动外排机制
1、改变细胞壁通透性
由于革兰阴性菌细胞壁外膜的屏障作用,使其对一些结构互不相同的药物,产生非特异性低水平的耐药性,是通过改变细胞壁通透性来实现的;
2、主动外排机制 可因基因突变而提高耐药水平;
例如:铜绿假单胞菌对抗菌药物耐药性强的原因
(1)对抗生素的通透性比其他革兰阴性菌差;
(2)菌体内存在能将四环素,β-内酰胺抗生素和喹诺酮类药物从胞内排出胞外的主动外排机制;
(3)该菌存在三种不同的外排系统,naIB型,nfxB型和nfxC型,各型的耐药谱存在差异.
四、抗菌药物的使用与细菌耐药性的关系。
耐药菌株的出现与抗菌药物的使用无直接关系.抗菌药物的作用只是选择耐药菌株,淘汰敏感菌株。
2.关于抗生素的论文材料有哪些
抗生素发展简介 抗生素分为天然品和人工合成品,前者由微生物产生,后者是对天然抗生素进行结构改造获得的部分合成产品。
1981年我国第四次全国抗生素学术会议指出,近些年来在抗生素的作用对象方面,除了抗菌以外,在抗肿瘤,抗病毒,抗原虫、寄生虫和昆虫等领域也有较快发展。有些抗生素具有抑制某些特异酶的功能,另外一些抗生素则具有其他的生物活性或生理活性的作用。
鉴于“抗菌素”早已越出了抗菌范围,继续使用抗菌素这一名词已不能适应专业的进一步发展,也不符合实际情况了。因此,会议决定将抗菌素正式更名为抗生素。
抗生素分类 根据抗生素的化学结构和临床用途,可将抗生素分为β—内酰胺类、氨基糖苷类、大环内酯类、林可霉素类、四环素类、氯霉素类以及其他主要抗细菌的抗生素、抗真菌抗生素、抗肿瘤抗生素、具有免疫抑制作用的抗生素十大类。 编辑本段药品发现抗生 很早以前,人们就发现某些微生物对另外一些微生物的生长繁 抗生素分子式殖有抑制作用,把这种现象称为抗生。
随着科学的发展,人们终于揭示出抗生现象的本质,从某些微生物体内找到了具有抗生作用的物质,并把这种物质称为抗生素,如青霉菌产生的青霉素,灰色链丝菌产生的链霉素都有明显的抗菌作用。所以人们把由某些微生物在生活过程中产生的,对某些其他病原微生物具有抑制或杀灭作用的一类化学物质称为抗生素。
抗菌 由于最初发现的一些抗生素主要对细菌有杀灭作用,所以一度将抗生素称为抗菌素。但是随着抗生素的不断发展,陆续出现了抗病毒、抗衣原体、抗支原体,甚至抗肿瘤的抗生素也纷纷发现并用于临床,显然称为抗菌素就不妥,还是称为抗生素更符合实际了。
抗肿瘤(antineoplastic) 抗生素的出现,说明微生物产生的化学物质除了原先所说的抑制或杀灭某些病原微生物的作用之外,还具有抑制癌细胞的增殖或代谢的作用,因此现代抗生素的定义应当为:由某些微生物产生的化学物质,能抑制微生物和其他细胞增殖的物质叫做抗生素。 细菌“导弹”有望代替抗生素 细菌之间相互拼杀所用的微小蛋白质“导弹”有望在不久的将来代替治疗疾病所用的抗生素。
研究该项技术的一个美国研究所希望能够首先在治疗动物(如猪和鸡)的常见病方面取得突破。同时这个研究所也发现用这种蛋白质“导弹”能够在食品无菌包装和保存方面做出突破。
由于人体血原对抗生素的反应存在一定的危险,这种物质的使用能够降低医学的危险性,且使用后没有后遗物。 编辑本段抗生素杀菌作用主要有4种机制抑制细菌细胞壁的合成 抑制细胞壁的合成会导致细菌细胞破裂死亡,以这种方式作用的抗菌药物包括青霉素类和头孢菌素类,哺乳动物的细胞没有细胞壁,不受这些药物的影响。
与细胞膜相互作用 一些抗菌素与细胞的细胞膜相互作用而影响膜的渗透性,这对细胞具有致命的作用。以这种方式作用的抗生素有多粘菌素和短杆菌素。
干扰蛋白质的合成 干扰蛋白质的合成意味着细胞存活所必需的酶不能被合成。干扰蛋白质合成的抗生素包括福霉素(放线菌素)类、氨基糖苷类、四环素类和氯霉素。
抑制核酸的转录和复制抑制 核酸的功能阻止了细胞分裂和/或所需酶的合成。以这种方式作用的抗生素包括萘啶酸和二氯基吖啶。
编辑本段药品使用、误区及不良反应使用 临床应用抗生素时必须考虑以下几个基本原则: (一)严格掌握适应证凡属可用可不用的尽量不用,而且除考虑抗生素的抗菌作用的针对性外,还必须掌握药物的不良反应和体内过程与疗效的关系。 (二)发热原因不明者不宜采用抗生素除病情危重且高度怀疑为细菌感染者外,发热原因不明者不宜用抗生素,因抗生素用后常使致病微生物不易检出,且使临床表现不典型,影响临床确诊,延误治疗。
(三)病毒性或估计为病毒性感染的疾病不用抗生素抗生素对各种病毒性感染并无疗效,对麻疹、腮腺炎、伤风、流感等患者给予抗生素治疗是无害无益的。咽峡炎、上呼吸道感染者90%以上由病毒所引起,因此除能肯定为细菌感染者外,一般不采用抗生素。
(四)皮肤、粘膜局部尽量避免反应应用抗生素因用后易发生过敏反应且易导致耐药菌的产生。因此,除主要供局部用的抗生素如新霉素、杆菌肽外,其它抗生素特别是青霉素G的局部应用尽量避免。
在眼粘膜及皮肤烧伤时应用抗生素要选择告辞适合的时期和合适的剂量。 (五)严格控制预防用抗生素的范围在下列情况下可采用预防治疗: 1.风湿热病人,定期采用青霉素G,以消灭咽部溶血链球菌,防止风湿热复发。
2.风湿性或先天性心脏病进行手术前后用青霉素G或其它适当的抗生素,以防止亚急性细菌性心内膜炎的发生。 3.感染灶切除时,依治病菌的敏感性而选用适当的抗生素。
4.战伤或复合外伤后,采用青霉素G或四环素族以防止气性坏疽。 5.结肠手术前采用卡那霉素,新霉素等作肠道准备。
6.严重烧伤后,在植皮前应用青霉素G消灭创面的溶血性链球菌感染。或按创面细菌和药敏结果采用适当的抗生素防止败血症的发生。
7.慢性支气管炎及支气扩张症患者,可在冬季预防性应用抗生素(限于门诊)。 8.颅脑术前1天应用抗生素,。
3.关于抗生素的论文材料有哪些
抗生素发展简介 抗生素分为天然品和人工合成品,前者由微生物产生,后者是对天然抗生素进行结构改造获得的部分合成产品。
1981年我国第四次全国抗生素学术会议指出,近些年来在抗生素的作用对象方面,除了抗菌以外,在抗肿瘤,抗病毒,抗原虫、寄生虫和昆虫等领域也有较快发展。有些抗生素具有抑制某些特异酶的功能,另外一些抗生素则具有其他的生物活性或生理活性的作用。
鉴于“抗菌素”早已越出了抗菌范围,继续使用抗菌素这一名词已不能适应专业的进一步发展,也不符合实际情况了。因此,会议决定将抗菌素正式更名为抗生素。
抗生素分类 根据抗生素的化学结构和临床用途,可将抗生素分为β—内酰胺类、氨基糖苷类、大环内酯类、林可霉素类、四环素类、氯霉素类以及其他主要抗细菌的抗生素、抗真菌抗生素、抗肿瘤抗生素、具有免疫抑制作用的抗生素十大类。 编辑本段药品发现抗生 很早以前,人们就发现某些微生物对另外一些微生物的生长繁 抗生素分子式 殖有抑制作用,把这种现象称为抗生。
随着科学的发展,人们终于揭示出抗生现象的本质,从某些微生物体内找到了具有抗生作用的物质,并把这种物质称为抗生素,如青霉菌产生的青霉素,灰色链丝菌产生的链霉素都有明显的抗菌作用。所以人们把由某些微生物在生活过程中产生的,对某些其他病原微生物具有抑制或杀灭作用的一类化学物质称为抗生素。
抗菌 由于最初发现的一些抗生素主要对细菌有杀灭作用,所以一度将抗生素称为抗菌素。但是随着抗生素的不断发展,陆续出现了抗病毒、抗衣原体、抗支原体,甚至抗肿瘤的抗生素也纷纷发现并用于临床,显然称为抗菌素就不妥,还是称为抗生素更符合实际了。
抗肿瘤(antineoplastic) 抗生素的出现,说明微生物产生的化学物质除了原先所说的抑制或杀灭某些病原微生物的作用之外,还具有抑制癌细胞的增殖或代谢的作用,因此现代抗生素的定义应当为:由某些微生物产生的化学物质,能抑制微生物和其他细胞增殖的物质叫做抗生素。 细菌“导弹”有望代替抗生素 细菌之间相互拼杀所用的微小蛋白质“导弹”有望在不久的将来代替治疗疾病所用的抗生素。
研究该项技术的一个美国研究所希望能够首先在治疗动物(如猪和鸡)的常见病方面取得突破。同时这个研究所也发现用这种蛋白质“导弹”能够在食品无菌包装和保存方面做出突破。
由于人体血原对抗生素的反应存在一定的危险,这种物质的使用能够降低医学的危险性,且使用后没有后遗物。 编辑本段抗生素杀菌作用主要有4种机制抑制细菌细胞壁的合成 抑制细胞壁的合成会导致细菌细胞破裂死亡,以这种方式作用的抗菌药物包括青霉素类和头孢菌素类,哺乳动物的细胞没有细胞壁,不受这些药物的影响。
与细胞膜相互作用 一些抗菌素与细胞的细胞膜相互作用而影响膜的渗透性,这对细胞具有致命的作用。以这种方式作用的抗生素有多粘菌素和短杆菌素。
干扰蛋白质的合成 干扰蛋白质的合成意味着细胞存活所必需的酶不能被合成。干扰蛋白质合成的抗生素包括福霉素(放线菌素)类、氨基糖苷类、四环素类和氯霉素。
抑制核酸的转录和复制抑制 核酸的功能阻止了细胞分裂和/或所需酶的合成。以这种方式作用的抗生素包括萘啶酸和二氯基吖啶。
编辑本段药品使用、误区及不良反应使用 临床应用抗生素时必须考虑以下几个基本原则: (一)严格掌握适应证凡属可用可不用的尽量不用,而且除考虑抗生素的抗菌作用的针对性外,还必须掌握药物的不良反应和体内过程与疗效的关系。 (二)发热原因不明者不宜采用抗生素除病情危重且高度怀疑为细菌感染者外,发热原因不明者不宜用抗生素,因抗生素用后常使致病微生物不易检出,且使临床表现不典型,影响临床确诊,延误治疗。
(三)病毒性或估计为病毒性感染的疾病不用抗生素抗生素对各种病毒性感染并无疗效,对麻疹、腮腺炎、伤风、流感等患者给予抗生素治疗是无害无益的。咽峡炎、上呼吸道感染者90%以上由病毒所引起,因此除能肯定为细菌感染者外,一般不采用抗生素。
(四)皮肤、粘膜局部尽量避免反应应用抗生素因用后易发生过敏反应且易导致耐药菌的产生。因此,除主要供局部用的抗生素如新霉素、杆菌肽外,其它抗生素特别是青霉素G的局部应用尽量避免。
在眼粘膜及皮肤烧伤时应用抗生素要选择告辞适合的时期和合适的剂量。 (五)严格控制预防用抗生素的范围在下列情况下可采用预防治疗: 1.风湿热病人,定期采用青霉素G,以消灭咽部溶血链球菌,防止风湿热复发。
2.风湿性或先天性心脏病进行手术前后用青霉素G或其它适当的抗生素,以防止亚急性细菌性心内膜炎的发生。 3.感染灶切除时,依治病菌的敏感性而选用适当的抗生素。
4.战伤或复合外伤后,采用青霉素G或四环素族以防止气性坏疽。 5.结肠手术前采用卡那霉素,新霉素等作肠道准备。
6.严重烧伤后,在植皮前应用青霉素G消灭创面的溶血性链球菌感染。或按创面细菌和药敏结果采用适当的抗生素防止败血症的发生。
7.慢性支气管炎及支气扩张症患者,可在冬季预防性应用抗生素(限于门诊)。 8.颅脑。
4.细菌对抗生素的抗药性是什么
世纪医学上最大的进步,也许是有史以来医学上最大的进步,是抗生素和化学治疗药物的发现、发展和应用。自1901年艾立希(PaulEhrlish)用有机砷治疗梅毒以来,直到弗莱明(AleanderFleming)发现细菌不能在培养皿上青霉菌菌落的附近生长以后,逐渐开创了现代的抗生素时代。这一发现的意义是什么?为什么最有效的抗生素大都来源于霉菌?抗生素是多种霉菌与细菌之间互相竞争、攻击对方的化学武器。它们是在亿万年的尝试和失败的选择过程中塑造出来利用了它对细菌的杀伤却对霉菌无害的特点。
许多霉菌和细菌产物对人是安全的,却能扫荡引起结核、肺炎和其它许多传染病的细菌,它们就是抗生素。人们认识、了解利用抗生素已有几十年了,这就是所谓抗生素时代。抗生素已经使经济发达国家进入了细菌所致疾病大大减少的黄金时代。公共卫生和抗生素的结合使传染病的死亡率下降极快,以致1969年美国卫生总监觉得可以宣告现在已是“可以把关于传染病的书收起来的时候了”。
像其它的“黄金时代”一样,它的寿命多半不长。危险的细菌,最突出的是引起结核和淋病的细菌,现在是比20年前要难控制得多了。病原微生物已经演化出抵抗抗生素的本领,正如它们过去在进化史中演化出抵抗我们的和霉菌的常规武器一样。密?柯亨最近在疾病控制和预防中心指出:“这些事件,使我们不得不考虑我们已接近抗生素后时代。”
确实可能如此。以葡萄球菌为例,它是最常见的感染的病原菌。在1941年,所有这种细菌都可以被青霉素杀死。到1944年,已经有了能产生分解青霉素的酶的菌株出现。到今天,95%的葡萄球菌菌株都对青霉素有一定程度的抗药性。50年代中发明了一种人工半合成的青霉素甲氧青霉素(methickkin),能杀死这些抗药菌株。然而,细菌又同样演变成抗甲氧青霉素的抗药性菌株,需要开发更新的药。80年代开始用于临床的环丙沙星曾经使人们抱有很大希望,但是现在纽约有80%的葡萄球菌对它已有抗药性。在俄勒冈退伍军人医院,一年内抗药菌株就从5%上升到80%以上。
20世纪60年代,大多数淋病病例是比较容易用青霉素控制的,即令是抗药菌株,用氨苄青霉素也还是有效的。现在已有75%的淋球菌株产酶灭活氨苄青霉素。这些变化有些是标准的染色体突变和自然选择的结果。但是细菌还有另外一种魔法:它们自己被一些细小的DNA环所感染,这种DNA环的名称是质粒(plasnid),其中偶尔会留下一部分成为细菌基因组的新成分。1976年,发现淋球菌从大肠杆菌的质粒获得了破坏青霉素的酶的基因密码。大肠杆菌是一种生活在人肠道的正常细菌,所以现在泰国和菲律宾90%的淋球菌已变成抗药菌株。类似的情形还有1983年荷比印地安保留地发生的那次严重流行性腹泻病原菌即富莱氏痢疾杆菌,被追溯到是来自一位长期用抗生素控制她的大肠杆菌尿路感染的妇女。该富氏痢疾杆菌也是从大肠杆菌的质粒获得抗药基因的。
我们面临的抗药性(抗-抗生素)风暴的病原菌的清单既长又骇人听闻。质粒介导的避免与红霉素结合的能力已使法国约有20%的肺炎球菌抗红霉素。现在袭击南美洲的某些霍乱弧菌已对过去有效的五种药呈现抗药性。Amoxiillin(阿莫西林)已对30%—50%的致病性大肠杆菌不再有效。看来,我们与“红色皇后”的赛跑,很不容易保持现有的名次。
最危险的事情也许是纽约城三分之一以上的结核病人是由一种抗生素的抗药性结核菌所致,而3%的新病例和7%的复治病例则抗两种或两种以上抗生素。因多抗药性结核菌致病的病人只有50%的生存希望。这种情况与发明抗生素以前同样严重。结核病在发展中国家仍然是一个最常见的传染病致死原因,它造成的死亡率占可以避免的成人死亡的25%和全部死亡率的6.7%。结核病的发病率在1985年以前的美国呈稳定下降趋势,然而1985年以后却回升了18%。病例中约有一半是因为艾滋病引起免疫缺陷而感染的,另一半则因接触机会增多和抗药性菌株。
5.对细菌获得耐药性能给人类带来什么样的影响
细菌耐药性又称抗药性,指细菌对于抗菌药物作用的耐受性,耐药性一旦产生,药物的化疗作用就明显下降。人类由该耐药细菌所引发的疾病便越难治愈。
扩展资料:
耐药性的机理:
(1)产生灭活酶。
灭活酶有两种,一是水解酶,如β-内酰胺酶可水解青霉素或头孢菌素。该酶可由染色体或质粒介导,某些酶的产生为体质性(组构酶);某些则可经诱导产生(诱导酶)。二是钝化酶又称合成酶,可催化某些基团结合到抗生素的OH基或NH2基上,使抗生素失活。
多数对氨基甙类抗生素耐药的革兰阴性杆菌能产生质粒介导的钝化酶,如乙酰转移酶作用于NH2基上,磷酸转移酶及核苷转移酶作用于OH基上。上述酶位于胞浆膜外间隙,氨基甙类被上述酶钝化后,不易与细菌体内的核蛋白体结合,从而引起耐药性。
(2)改变细菌胞浆膜通透性。
细菌可通过各种途径使抗菌药物不易进入菌体,如革兰阴性杆菌的细胞外膜对青霉素G等有天然屏障作用。绿脓杆菌和其他革兰阴性杆菌细胞壁水孔,或外膜非特异性通道功能改变,引起细菌对一些广谱青霉素类、头孢菌素类包括某些第三代头孢菌素的耐药。
细菌对四环素耐药主要由于所带的耐药质粒可诱导产生三种新的蛋白,阻塞了细胞壁水孔,使药物无法进入。革兰阴性杆菌对氨基甙类耐药除前述产生钝化酶外,也可由于细胞壁水孔改变,使药物不易渗透至细菌体内。
(3)细菌体内靶位结构的改变。
链霉素耐药菌株的细菌核蛋白体30s亚基上,链霉素作用靶位P10蛋白质发生改变。林可霉素和红霉素的耐药性,系细菌核蛋白体23s亚基上的靶位蛋白质发生改变,使药物不能与细菌结合所致。
某些淋球菌对青霉素G耐药,以及金黄色葡萄球菌对甲氧苯青霉素耐药,乃因经突变引起的青霉素结合蛋白改变,使药物不易与之结合。这种耐药菌株往往对其他青霉素和头孢菌素类也都耐药。
参考资料:耐药性-百度百科
6.论述细菌耐药性产生的机理及如何防止其产生
滥用抗生素的危险最主要是促进细菌耐药性的增强。
数据表明,有越来越多的细菌耐药,且耐药力在不断提高。20世纪五六十年代青霉素一次剂量只是2万~3万单位,现在需用几十万、几百万单位。
葡萄球菌、肠道革兰氏阳性杆菌、结核杆菌、痢疾杆菌之所以长久的肆虐人类,就是其耐药性不断增强的结果。 由于细菌的进化永远不会停止,因而对任何抗生素都会有产生耐药性的可能。
河南省食品药品监督管理局局长李松武在一次新闻发布会上,以环丙沙星为例,介绍这种上世纪90年代刚刚上市的药品,在投入使用短短十几年的时间里,我国患者的耐药性已经高达60%,而在西方发达国家则只有1%。 抗菌药物的滥用正让我们付出巨大的代价,药品不良反应、药源性疾病大量增加,越来越多的细菌对抗药品的能量不断增大,例如幽门螺旋杆菌,对喹诺酮类药品的耐药性,已经升至82%。
“细菌越来越耐药,抗生素越来越失效”成了经济较发达地区的普遍问题。据陈重华委员介绍,上海已经成为我国细菌耐药性最为严重的地区之一,一些药品的有效率在上海地区已经跌到了20%,问题还在于耐药菌是可以在不同地区、国家间的人群之间传播的。
随着医疗条件的不断改善,新的抗菌药物不断涌现。抗生素的大剂量普遍使用,以及禽畜饲料添加剂中大量使用抗生素,使食品、奶制品、饮料等也富含抗生素,从而逐步形成了一个越来越大的对抗生素产生耐药性的群体。
这导致临床上出现应用高级抗生素———耐药性更强———再用更高级的抗生素的恶性循环。 陈重华委员分析指出,滥用抗生素的主要原因:一是有不少医生对患者使用抗生素时,很少依靠细菌耐药性检查,针对不同的细菌感染选择不同的抗生素,而往往是凭个人经验,采取一种抗生素无效再更换其他抗生素的方法进行治疗。
二是由于抗生素药品市场竞争十分激烈,一些厂家往往采取不正当的手段,通过促销费等形式不断提高抗生素的使用面和使用量。 三是不少患者的就医心态有问题。
希望用好药,而且往往是越贵的药、越新的药越好,总希望能药到病除。这几个方面的因素集合在一起,使抗生素的生产销售环节、使用消费环节都希望用得越多越好,他们共同推进了抗生素的滥用程度。
7.抗生素的细菌耐药性产生的机理
1 抗菌药的主要作用机理 Bauman R W主编的《微生物学》[1]中,抗菌药的作用机理主要有以下5种。
1.1 抑制细胞壁的合成 这些药物主要选择性作用于某些有细胞壁的真菌、细菌,而对宿主本身没有毒性作用。这些药物包括青霉素(Penicillins)、头孢菌素(Cephalosporins)、万古霉素(Vancomycin)、杆菌肽(Bacitracin)、异烟肼(Isoniazid)、乙胺丁醇(Ethambutol)等。
它们主要通过抑制细胞壁的主要成分——肽聚糖的合成,从而引起细胞壁的通透性改变,大量水分进入细胞浆中而引起细胞的裂解。 1.2 抑制蛋白质的转录或合成 由于真核生物和原核生物核糖体的差异,真核生物的核糖体主要是80 S,由60 S和40 S两个亚基组成,而原核生物的核糖体是70 S,主要由30 S和50 S两个亚基组成。
属于这一种作用机制的主要抗菌药包括氨基糖苷类(Aminoglycosides),如链霉素(Streptomycin)、阿米卡星(Amikacin)、托普霉素(Tobramycin)、庆大霉素(Gentamicin)等,它们主要作用于核糖体的30 S亚基,改变它的形状,导致mRNA不能被正常地翻译而引起蛋白质合成受阻;而四环素类(Tetracyclines)也是作用于核糖体的30 S亚基,但它们主要与A位特异性结合,即tRNA的结合位点,从而阻止了肽链的延伸。另外一些抗菌药,如氯霉素(Chloramphenicol)主要阻断50 S亚基的酶结合位点而抑制蛋白质的翻译过程;林可霉素(Clindamycin)和大环内酯类(Macrolides)则主要是结合到50 S亚基的不同部位,抑制核糖体从一个密码子到另一个密码子的延伸过程,从而使蛋白质的翻译过程停止,蛋白质的合成受到抑制。
1.3 破坏胞浆膜的完整性 这类抗菌药主要是一些抗真菌的药物,如两性霉素B(Amphotericin B),它们主要能够与细菌细胞胞浆膜上的一些磷脂成分结合,破坏胞浆膜的完整性,从而导致细胞的裂解。 1.4 影响细菌的代谢途径 这类抗菌药的代表就是磺胺类(Sulfonamides),作为对氨基苯甲酸(paraaminobenzoic acid, PABA)的类似物,它们可以竞争性结合对氨基苯甲酸酶,对氨基苯甲酸酶催化PABA转化为二氢叶酸,二氢叶酸在体内进一步代谢成为四氢叶酸(tetrahydrofolic acid, THFA)。
THFA是合成嘌呤和嘧啶核苷酸的重要辅酶,磺胺类的这一种竞争性的抑制作用,直接导致细菌体内THFA的严重缺乏,从而导致细菌细胞内的代谢混乱而引起细菌的死亡。 1.5 抑制核酸的合成 这类药物主要包括一些核苷酸的类似物,它们可以插入到DNA或RNA链中,导致DNA或RNA复制过程中的错配,而干扰其正常的功能。
另外一些药物,如喹诺酮(Quinolones)、氟喹诺酮(Fluoroquinolones)可以特异性地抑制DNA旋转酶的活性,抑制细菌DNA复制时的解螺旋,导致DNA复制的受阻。 2 细菌耐药性产生的生化机理 细菌的耐药性机理主要有生化机理和基因机理两个方面。
目前研究的比较清楚的生化机理主要有以下几个方面。 2.1 细菌产生破坏药物结构的酶 这一类的耐药细菌常常可以产生一种或多种水解酶或钝化酶来水解或修饰进入细菌细胞内的药物,使之失去生物活性。
这是引起细菌耐药性的最重要的机制,目前发现和分离的钝化酶主要有以下4种。 (1)β-内酰胺酶(β-Lactamase)。
它是细菌对β-内酰胺类抗菌药耐药的主要原因,由于β-内酰胺酶的产生,使其β-内酰胺环的酰胺键断裂而失去抗菌活性。该类酶可以为染色体介导,也可为质粒介导。
Bush K[2]根据底物及酶抑制剂的作用类型将剂的作用类型将β-内酰胺酶分为4种,即A组β-内酰胺酶(主要水解青霉素类),B组金属酶(其活性部分是结合锌离子的硫醇),C组β-内酰胺酶(主要水解头孢菌素类),D-组β-内酰胺酶(苯唑西林水解酶)。 (2)氨基糖苷类钝化酶。
细菌对氨基糖苷类 (Aminoglycosides)抗生素产生耐药性的最重要的原因就是产生了对这一类药物的共价修饰酶。这些酶通过磷酸化、乙酰化和腺苷酸化等途径对其进行修饰而使其灭活。
目前,这一类的共价修饰酶主要有[3]磷酸转移酶(O-phosphotransferases, APHs), 腺苷酸转移酶(O-adenyltransferases,ANTs)和N-乙酰转移酶(N-acetyltransferases,AACs)3类。现在已经对这些酶的晶体结构有了清楚的研究。
(3)氯霉素乙酰转移酶。此酶为一种胞内酶,早在1987年,Lyon等就确定此酶由质粒或染色体或转座子基因编码,主要作用是使氯霉素类抗生素转化为无抗菌活性的代谢物[4]。
(4)红霉素酯化酶。此酶是一种体质酶,由质粒介导,主要作用是水解红霉素及大环内酯类抗生素结构中的内酯而使之失去抗菌活性[4]。
2.2 靶位的改变 由于抗菌药作用的靶位(如核糖体和核蛋白)发生突变或被细菌产生的某种酶修饰而使抗菌药物无法发挥作用,以及抗菌药的作用靶位(如青霉素结合蛋白和DNA回旋酶)结构发生改变而使之与抗生素的亲和力下降,这种耐药机制在细菌耐药中普遍存在。目前的研究表明,β-内酰胺类抗菌药物的作用靶位为青霉素结合蛋白(PBP),氨基糖苷类和四环素抗菌药物的作用靶位为核糖体的50 S亚基,大环内酯类和氯霉素以及克林霉素的作用靶位为核糖体的30 S亚基,利福霉素类的作用靶位为依赖于DNA的。
8.关于药物分析的毕业论文什么开题报告什么任务书的
摘要:目的:通过对外科住院病历中抗菌药物应用分析,了解我院抗菌药物的应用情况。
方法:随机抽取2004年1月至2004年12月份外科出院病历311份, 详细记录相关内容,分析抗菌药物的使用。结果:患者住院时间最长44d,最短2d,平均住院天数(10。
2±4。3)d;术后用药最短2d,最长16d,平均用药天数(6。
1±3。5)d。
我院临床使用的抗菌药物有六大类共28种,临床最常见的联用形式为头孢类或青霉素类或喹诺酮类+硝咪唑类或克林霉素类。结论:我院抗菌药物使用存在联用较多,用药时间偏长的问题。
关键词: 外科; 住院; 抗菌药物; 应用 The Application Analysis of Anti-bacteria in 311 Pieces of Surgical Hospitalization Case-history HUANG Min ZHANG Ou, XIAN Zhi-lian (The Second Hospital of Zhanjiang, Guangdong Zhanjiang 524013, China) Abstract: Objective :Through the application analysis of anti-bacteria medicine in surgical hospitalization case-history , to know the situation of its application in our hospital。 Method: Randomly select 311 pieces of surgical discharged case-history from January to December in 2004 and record related content in detail,Analyze the usage of anti-bacteria medicine 。
Result:The longest hospitalization time of patients is 44 days ,the shortest is 2 days,average hopitaliation time is (10。 2±4。
3)days;the shortest time of postoperative usage of anti-bacteria is 2 days ,the longest is 16 days,aveage days of usage is (6。 1±3。
5)days。There are totally 28 types in 6 claasifications of anti-bacteria medicine in our hospital。
The most common in clinic are cephalosporins or penicillins or qunolones+ or kelinmeisu。 Conclusion:There are problems of more co-usage and longer usage of anti-bacteria medicine in our hospital。
Key words: Surgical department; Hospitalization; Anti-bacteria medicine; Application 抗菌药物的合理应用不仅可提高外科感染性疾病的防治效果,而且在增加手术安全性、扩大手术范围、提高治愈率和减少术后并发症等方面都着重要作用。 然而,因为广谱抗菌药物的增多,药源丰富和使用方便,使一些医师对用药指征掌握不严,出现了抗菌药物应用不当的现象,除了耐药菌增加及造成经济上的巨大浪费外,还导致许多药源性疾病的发生。
为了解我院抗菌药物的使用情况,随机抽取外科2004年的部分处方进行统计分析,以期提高我院合理应用抗生素药物的水平。 1 临床资料 随机抽取2004年1至2004年12月份外科出院病历311份, 详细记录如下内容:科别、病案号、姓名、性别、年龄、诊断、手术名称,使用抗菌药物的名称、用法、用量、用药起止时间等内容。
其中男性193例,女性118例,最大年龄75岁,最小1。 5岁,平均年龄41。
3岁。 2 结果 表1 抗菌药物的使用情况(略) 表2 抗菌药物联合使用情况(略) 2。
1 用药情况:患者住院时间最长44d,最短2d,平均住院天数(10。2±4。
3)d;术后用药最短2d,最长16d,平均用药天数(8。 1±3。
5)d。我院临床使用的抗菌药物有六大类共28种,包括青霉素类的青霉素钠、青霉素V钾、哌拉西林钠、氨苄西林、氯唑西林钠、阿莫西林,头孢菌素类抗生素的头孢唑啉钠、头孢哌酮、、头孢曲松钠、头孢噻肟钠、头孢拉啶,氨基糖苷类的硫酸链霉素、硫酸庆大霉素、硫酸阿米卡星、依替米星,大环内酯类的红霉素、乙酰螺旋霉素、罗红霉素,喹诺酮类的环丙沙星、洛美沙星、氧氟沙星、诺氟沙星,其它类的有克林霉素、四环素及氯霉素、舒巴坦钠、替硝唑。
抗菌药物使用情况具体见表1。 2。
2 联合应用情况:临床最常见的抗菌药物联用形式为头孢类或青霉素类或喹诺酮类+硝咪唑类或克林霉素类。见表2。
2。3 应用抗菌药物预防和治疗情况:术前使用抗菌药物157例,疗程为1~9d,术后所有患者均使用了抗菌药物,疗程为1~42d。
3 讨论 抗菌药在外科系统的应用主要是作为预防和控制开放性伤口的感染,对于清洁伤口及加强无菌操作的部分手术,可以避免使用[1]。预防手术后感染的基本原则是严格无菌技术操作,提高机体抵抗力,以及抗菌药物的预防性应用。
适时地给药可使抗菌药以其有效浓度弥散入手术区,以杀灭手术过程中进入机体的细菌;它也可以阻止细菌着床,及时杀灭污染组织的细菌;或抑制细菌生长,有效地降低术后切口感染的风险。 预防用药原则上只限于已知有效或一旦感染后果不堪设想的情况,要用杀菌剂而不能用抑菌剂,用量要足。
第3代头孢菌素类抗菌药如头孢曲松、头孢哌酮使用率占本统计病历中首位,它们半衰期为8h,24h后血内所含活性物质的浓度仍高于主要病原体抑菌浓度数倍,疗效好,作用快,对中、重度感染具有广泛的应用前景[2]。 青霉素类抗菌药具有杀菌活性强、全身分布良好、毒性低、对敏感细菌感染疗效好等优点,在临床上长期占有重要地位。
氨基糖苷类共使用91例次,主要是依替米星、阿米卡星,其耳、肾毒性都小于丁胺卡那、庆大霉素等。喹诺酮类抗菌药对细菌显示选择性毒性且不受质粒传导耐药性的影响,因此与其他抗菌。
转载请注明出处众文网 » 细菌对抗菌药物的耐药性毕业论文(试述细菌对抗菌药物产生耐药性的机制.)