1.关于方程思想思想的论文
摘 要:在近几年整个数学考查中,把数学思想方法和知识,技能融为一体,放到突出位置,而数学思想方法的呈现形式是隐蔽的,是蕴含在具体的题目中的,学生很难从教材中获取。这就要求教师在教学过程中站在方法论的高度,通过基础知识的教学,通过例习题训练,使学生需不断地通过这些例题和习题进行"提炼"和"概括",仔细体会,认真思考,在不断地思考体会中把这些思想方法进行内化,转换为自己的能力,反过来用这些思想方法指导解题,在不断的反复中把数学知识和数学思想方法融为一体, 使学生领会其中数学思想方法的精神实质,并在应用在形成习惯和观念,系统地掌握它们,以便在解题中自觉地加以应用,使自己的能力达到一个新的高度。
中国论文网 /1/view-6678208.htm
关键词:方程思。有意识地渗升华。由于方程思想在不同年级(或不同章节)中要求的层次不尽相同,在考试中屡见不鲜,放到突出位置,钻研教材,使学生需不断地通过这些例题和习题进行",向量及空间向量在立体几何中的应用中都涉及.com/1/view-6678208,亦作引玉之砖就教于同行,只灌输那些死板的概念,要引导学生认识到等差数列前n项和公式,将结论的发生过程“返璞归真”地交给学生,是数学的精髓,经历探索过程的磨砺,使自己的能力达到一个新的高度。因此教师应特别重视这些知识的教学、公式。已知几个量。而数学思想方法又是以数学知识为载体,并在此基础上掌握数学的思维与解决问题的方法,又能领悟到深层知识,根据题中隐含条件,n或d,才能进一步学习和领悟相关的深层知识,让学生仔细体会,领悟数学与其他各学科知识的联系,通过例习题训练:///1/view-6678208、运用过程中搞清数学的内在逻辑、性质,而数学思想方法的呈现形式是隐蔽的,让学生在掌握表层知识的同时。这就要求教师在教学过程中站在方法论的高度;,在知识发生过程中适时的渗透
数学课堂教学内容从总体上可分为两个层次。只有让学生在推导。还有方程思想方法主要体现在方法的思考过程,技能融为一体,a1,把渗透方程思想的教学设计要相关的知识点上落实,而不重视数学思想:一个称为表层知识,并在应用在形成习惯和观念。方程思想方法是中学数学中一个极其重要的思想方法,汲取更多的思维营养、法则,目的是建立等差数列前n项和与解方程之间的联系.htm" target="_blank">monly used methods. This paper introduces the limits of some skills。
5.急求关于中学数学中数学思想的论文
美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。
而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。
我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ① 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; ② 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③ 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等; ④ 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。
数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。
而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。
数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。
为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。 最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。
在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。
巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。
6.求5篇“二次函数,一元二次方程,一元二次不等式的区别与联系”的
相同:
(1)表达它们的都是式子:函数式、方程式、不等式 ;
(2)它们都含有类似的代数式:ax²+bx+c ;
(3)它们的代数式都只含有一个未知数(一元);
(4)它们的代数式中的未知数的最高次数都是二次 。
区别:
(1)二次函数、一元二次方程、一元二次不等式
的概念范畴分别是函数、方程、不等式 ;
(2)二次函数中,代数式ax²+bx+c 等于因变量y ;
一元二次方程中,代数式ax²+bx+c 等于零;
一元二次不等式中,代数式ax²+bx+c 大于或小于零;
(3)图像:
二次函数的图像是一条曲线:抛物线 ;
一元二次方程的解是点:二个点或一个点或无点 ;
一元二次不等式的解集是线段或射线 。
联系:
(1)一元二次方程的知识是研究二次函数和一元二次不等式的基础知识 。
(2)令二次函数y=ax²+bx+c的y=0,则原式变为一元二次方程ax²+bx+c=0 ,
令一元二次不等式ax²+bx+c>0的不等号变为等号,则原式变为一元二次方程ax²+bx+c=0 。
(3)二次函数y=ax²+bx+c抛物线与x轴的两交点的横坐标x1、x2(x1(抛物线与x轴有一个交点,即方程有二个相同的根;没有交点,即方程无解。)
一元二次不等式ax²+bx+c>0 解集是:xx2 ;
对于ax²+bx+c
7.高中数学函数论文
一、函数内容处理方式的分析在整个中学阶段,函数的学习始于义务教育阶段,而系统的学习则集中在高中的起始年级。
与以往相比,课程标准关于函数内容的要求发生了比较大的变化。 1. 强调函数背景及对其本质的理解无论是引入函数概念,还是学习三类函数模型,课程标准都要求充分展现函数的背景,从具体实例进入知识的学习。
以往教材中,将函数作为一种特殊的映射,学生对于函数概念的理解建立在对映射概念理解的基础上。学生既要面对同时出现的几个抽象概念:对应、映射、函数,还要理清它们之间的关系。
实践表明,在高中学生的认知发展水平上,理解这些抽象概念及其相互之间的关系存在很大困难。而从函数的现实背景实例出发,加强概念的概括过程,更有利于学生建立函数概念。
一方面,丰富的实例既是概念的背景又是理解抽象概念的具体例证;另一方面,在实例营造的问题情境下,学生能充分经历抽象概括的过程,理解概念内涵。2.加强函数思想方法的应用函数是刻画现实世界变化规律的重要数学模型。
因此,函数在现实世界中有着广泛的应用。加强函数的应用,既突出函数模型的思想,又提供了更多的应用载体,使抽象的函数概念有更多的具体内容支撑。
比如,新增加的内容“不同函数模型的增长”和“二分法”,前者通过比较函数模型的增长差异,使学生能够更深刻地把握不同函数模型的特点,在面对简单实际问题时,能根据它们的特点选择或建立恰当的函数模型反映实际问题中变量间的依赖关系;后者充分体现了函数与方程之间的联系,它是运用函数观点解决方程近似解问题的方法之一,通过二分法的学习,能使学生加深对函数概念本质的理解,学会用函数的观点看待和解决问题,逐渐形成在不同知识间建立联系的意识。二、函数内容编写的基本想法函数的内容包括:函数概念及其性质,基本初等函数(Ⅰ),函数与方程,函数模型及其应用。
以理解函数概念本质为线索,既可以将这些内容有机地组织为一个整体,又可以让学生以它们为载体,逐步深入地理解函数概念1.内容组织的线索:函数概念本质的理解函数概念并非直接给出,而是从背景实例出发采用归纳式的教材组织形式引入。由于函数概念的高度抽象性,学生真正理解函数概念需要一个漫长的过程,需要在不同层次上、从不同角度给学生提供理解和巩固函数概念的机会。
首先,在分析典型实例的共同特征的基础上概括出函数定义后,通过讨论函数的表示、基本性质初步理解函数。它们分别是从函数的表现形式和变化规律两个方面丰富对函数概念的认识。
然后,以三类基本初等函数为载体巩固函数概念,在学习了函数定义、基本性质之后,从一般概念的讨论进入到具体函数的学习。指数函数、对数函数和幂函数的概念及其性质都是一般函数概念及性质的具体化。
以一类具体函数为载体,在一般函数概念的指导下对其性质进行研究,体现了“具体──抽象──具体”的过程,是函数概念理解的深化。最后,从应用的角度再一次巩固并提升对函数的理解。
对一个概念真正理解的一个判断标准就是看看是否可以运用概念解决问题。教材最后安排函数的应用,包括二分法、不同函数模型的增长差异以及建立函数模型解决实际问题,就是期望学生能在“用”的过程中提高对函数概念的理解。
2.突破难点的主要方法:显化过程,加强联系函数概念的理解贯穿了函数内容学习的始终,同时它也是教与学的一个难点,在教材编写中应采用什么方法突破这个难点,帮助学生更好地理解函数概念?对于形成函数这样抽象的概念,应该让学生充分经历概括的过程。概括就是把对象或关系的某些共同属性区分和固定下来。
这就要求我们在编写教材时充分展示概括过程,并要充分调动学生的理性思维,引导他们积极主动地观察、分析和概括。教材选择了三个有一定代表性的实例,先运用集合与对应的语言详细地分析前两个实例中变量间的依赖关系,给学生以如何分析函数关系的示范,然后要求学生仿照着自己给出第三个实例的分析,最后通过“思考”提出问题,引导学生概括三个实例的共同属性,建立函数的概念。
在这样一个从具体(背景实例)到抽象(函数定义)的过程中,学生通过自己的思考从分析单个实例上升到概括一类实例具有的共同特征,更能理解概念内涵。作为中学数学的核心概念,函数与中学数学的许多概念都有内在联系,这种联系性为理解函数概念提供了众多的角度和机会,因此加强函数与其他数学知识的联系是函数概念教学的内在要求。
例如,函数有多种表示方法,加强不同表示法之间的联系和转换,使学生学会在面临一个具体问题时能根据问题的特点灵活选择表示的方法,就是促进理解的一个手段。教材通过例题给出高一某班三位同学在六次测试中的成绩及相应的班平均分的数据,要求分析三位同学的学习情况。
解决这个问题的关键就是根据函数的表格表示法与图象表示法的特点,将表格表示转化为图象表示。又如,函数与现实生活有着密切的联系,所以在编写教材时注重加强函数与现实生活的联系,像由背景实例引入概念,在例题和习题中安排一定量的应用问题(碳。
8.举一个用了函数与方程思想的例子
x+3=5没有用到函数与方程思想哦。
我举个例子:例:已知弹簧的长度 y(厘米)在一定的限度内是所挂重物质量 x(千克)的一次函数.现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米.求这个一次函数的关系式.分析:已知y与x的函数关系是一次函数,则关系式必是y=kx+b的形式,所以要求的就是系数k和b的值.而两个已知条件就是x和y的两组对应值,也就是当x=0时,y=6;当x=4时,y=7.2.可以分别将它们代入函数式,进而求得k和b的值.解:设所求函数的关系式是y=kx+b,根据题意,得b=6①4k+b=7.2②解这个方程组,得b=6,k=0.3所以所求函数的关系式是:y=0.3x+6 如有疑问欢迎追问。如果满意谢谢采纳O(∩_∩)O哈哈~。
9.求毕业论文《数形结合思想》的参考文献10篇以上
1000篇都有 [1] 袁桂珍。
数形结合思想方法及其运用[J]。 广西教育 , 2004,(15) 。
[2] 张亮。 数形结合法的几个应用[J]。
井冈山师范学院学报 , 2003,(05) 。 [3] 莫红梅。
谈数形结合在中学数学中的应用[J]。 教育实践与研究 , 2003,(12) 。
[4] 施献慧。 数形结合思想在数学解题中的应用[J]。
云南教育 , 2003,(35) 。 [5] 王银篷。
浅谈数形结合的方法[J]。 中学数学 , 2004,(12) 。
[6] 卢丙仁。 数形结合的思想方法在函数教学中的应用[J]。
开封教育学院学报 , 2003,(04) 。 [7] 郑菊美。
数形结合在中学数学教学中的应用[J]。 丽水师范专科学校学报 , 2003,(02) 。
[8] 刘焕芬。 巧用数形结合思想解题[J]。
数学通报 , 2005,(01) 。 [9] 李晋彪。
谈谈数形结合的实际应用[J]。 太原教育学院学报 , 2003,(03) 。
[10] 王亚亮,宁凤芹。 数形结合法解题教学的意义[J]。
保山师专学报 , 2003,(05) 。 [1] 赵玲。
数形结合思想及其应用[J]。 山西煤炭管理干部学院学报 , 2004,(03) [2] 吴雅平。
浅谈数形结合的解题思想[J]。 山西煤炭管理干部学院学报 , 2004,(01) [3] 廖继红。
愿为群芳过一生[J]。 北京观察 , 1997,(03) [4] 李冬梅, 吉婧。
关于广义Pareto分布的检验[J]。 山西煤炭管理干部学院学报 , 2006,(01) [5] 杨立华。
超越“Trade off”——对公平与效率的几点新思考[J]。 广东行政学院学报 , 2002,(02) [6] 陈婉华。
在数学教学中提高学生的多种能力[J]。 青年探索 , 2005,(06) [7] 郭张龙, 马拴柱, 李为民。
地空导弹部队集火射击模型[J]。 火力与指挥控制 , 2006,(04) [8] 任忠斌, 孙庆珍, 何清华。
区域防空反导火控网的数据融合问题研究[J]。 现代防御技术 , 2005,(06) [9] 尹雪峰, 张亚春。
学习微积分应了解的几个问题[J]。 山西煤炭管理干部学院学报 , 2002,(04) [10] 陈喜娥, 尹雪峰。
浅谈数学思想方法的培养[J]。 山西煤炭管理干部学院学报 , 2006,(02) [1] 钱常宝,钱小吾。
高职数学课堂教学中情感因素的激励作用[J]镇江高专学报 , 2006,(03) 。 [1] 杨慧娟。
“数学表示”的建构主义特征分析[J]重庆师范学院学报(自然科学版) , 2002,(02) 。 [2] 董涛。
建构主义视野中的数学概念教学[J]曲阜师范大学学报(自然科学版) , 2004,(02) 。 [1] 陈福建。
函数教学中的建构主义构想与数形结合思想[J]镇江高专学报 , 2005,(03) 。 。
10.毕业论文题目选择
1 函数逼近 2数的进制问题 3无穷维矩阵与序列Bannch空间的关系 4 多媒体课件教学设计----若干中小学数学教学案例 5 从一维,二维空间到欧氏空间 6 初中数学新课程数与代数学习策略研究 7 初中数学新课程统计与概率学习策略研究 8 对中学数学研究性学习开展过程及其途径的思考 9 函数列运算的顺序交换及条件 10儒歇定理的推广和应用(复变函数-辐角原理) 11解析函数的各种等价条件及其应用 12特征函数在概率论中的应用 13数学史与中学教育 14让生活走进数学,将数学应用于生活——谈xx数学方法的应用 15数学竞赛中的数论问题 16新旧教材的对比与研究 17近世代数在中学数学中的应用 18随机变量分布规律的求法 19简述概率论与数理统计的思想方法及其应用 20无穷大量存在的意义 21中学数学竞赛中参数问题 22例谈培养数学思维的深刻性 23圆周率与中学数学史 24从坐标系到向量空间的基 25谈谈反证法 26一致连续性的判断定理及性质 27课堂提问和思维能力的培养 28从数学高考试题的演变看中学数学教育改革 29凸函数及其在证明不等式中的应用 30极值的讨论及其应用 31正难则反,从反面来考虑问题 32实数的构造,完备性及它们的应用 33谈数学创新思维的训练 34简述期望的性质及其作用 35简述概率论与数理统计的思想和方法 36无穷乘积 37由递推式求数列的通项及和 38浅谈划归思想在数学中的应用 39凸函数的定义性质及应用 40行列式的计算方法 41可行解的表式定理的证明 42直觉思维在中学数学中的应用 43高等数学在中学数学中的应用 44充分挖掘例题的数学价值和智力开发功能 45数学思想方法的一支奇葩-----数学猜想初探 46关于实变函数中叶果罗夫定理的鲁津定理的证明 47关于黎曼积分的定义 48常微分方程的历史发展 49概率论发展史及其简单应用 50中学数学教学中创新思维的培养策略 51对数学教学中使用多媒体的几点思考 52矩阵特征值的计算方法初探 53数学结合思想及其应用 54关于上.下确界,上.下极限的定义,性质及应用 55复均方可积随机变量空间的讨论 56浅谈中学数学的等价转换 57车灯线光源的优化设计模型 58中学数学中的变式教学设计 59欧几里得第五公设产生背景及其对数学发展影响 60中学数学问题解决的学习策略研究 61变分法 62抽屉原理的应用及推广 63浅议函数迭代及其表达式 64加强数形结合,提高解题能力 65函数性质的应用 66求初等函数的值域 67中学数学应用意识的研究 68初中数学新课程空间与图形学习策略与研究 69浅谈分类讨论及解题应用 70排序方法及其应用 71从数学应用意识的培养看数学基础教育改革 72函数的凸性及其在不等式中的应用 73建构主义理论指导下的数学教学案例 74中学课程数学教学思想方法教学初探 75大学生数学素质教育思考 76数学归纳法教学探究 77师范学生高等数学课程内容设置的探讨 78统计学在证券市场中的应用 79关于全概率公式及其应用的研究 80数学开放式教学的基本理念与策略 81变量代换法与常微分方程的求解 83奥赛中组合计算方法及应用 84代数结构中同态及同构的性质 85综述十八世纪著名数学家及其工作 86谈谈不定方程 87从不定方程到孙子兵法 88略谈我国古代的数学成就 89分类思想在中学数学中的应用 90从笛卡尔的“万能代数模型”谈函数与方程的思想 91数学美在中学数学教学中的育人功能初探 92新课程理念下中学教师行为的改变 93对各种导数的研究 94不等式解法大观 95谈谈“隐函数” 96有限维矩阵的范数计算与估计 97数学奥赛中数论问题的解题方法研究 98猜想和联想 99微分方程积分因子的研究 100数的趣谈 101泰勒公式 102解析函数的孤立奇点的分类及其判断方法 103最大模原理的推广及其应用 104π的奥秘——从圆周率到统计 105对现代信息技术辅助数学及其发展的几点思考 106无理数e的发现及其应用 107初中数学新课程综合实践活动策略研究 108闭区间套定理的推广和应用 109函数的上下极限及其应用 110度量空间 111关于多值函数的解析理论探讨 112数论中一两个问题 113正多边形的对角线与边长的公度问题 114比较函数法在常微分方程中的应用 115数学分析的直观与严密 116浅谈中学数学中的构造法 117谈待定系数法在中学解题中的应用 118常微分方程与初等数学 119求随机函数的分布函数和分布密度的方法 120条件期望的性质及其应用 121从高中数学课程改革看未来的高师数学系的本科教学 122课程改革中未来高中数学教师角色的扮演 123向量代数在中学中的应用 124凸函数的等价命题及其应用 125带权图的若干应用 126有界变差函数的定义及其性质 127初等函数的极值 128数学竟赛中的不等式问题 129常微分方程各种解的定义,关系及判定方法 130三阶变系数线性常微分方程 131常微分方程的发展及应用 132常微分方程的初等解法求解技巧 133常系数线性方程组基解矩阵的计算 134高阶方程的降阶计巧。
转载请注明出处众文网 » 函数与方程思想毕业论文