1.驱动桥故障诊断论文怎么写
汽车驱动桥故障诊断车速变化声增减,细听特征在瞬间。
改变车速咯噔响,齿轮损坏配合旷。加速嗷嗷桥壳烫,间隙过小缺油量。
汽车提速嘤嘤声,局部过热查轴承。高速声大减速显,哗啦哗啦轴承旷。
汽车转弯嗒嗒响,差速器内有故障。汽车行驶时,驱动桥发出较大响声,声音特征和出现时机不同。
有的响声随车速升高增大,有的响声在汽车起步或突然变速的瞬间明显,而有的则在汽车匀速行驶时响声明显。应先检查驱动桥内齿轮油的存量、品质、粘度,视情况更换。
然后进行如下诊断: ①汽车在起步、变速瞬间、车速不稳定时,驱动桥内发出“咯噔咯噔”的金属撞击声。停车,然后转动驱动桥主动轴突缘。
如果手感松旷(转动时突缘圆周方向旷量超过了3毫米),且有撞击声,是齿轮啮合间隙过大而造成异响。 ②汽车加速行驶时,驱动桥内发出一种连续的“嗷嗷”声,且随车速升高而响声加大。
停车后触摸桥壳感到烫手,是齿轮啮合间隙过小。 ③汽车稳定行驶时,驱动桥内发出一种有节奏的“哽哽”声,其节奏随车速变化,是齿轮啮合不均匀,或是机件松动相互碰刮。
④汽车转弯时,驱动桥内发出一种轻脆的“嗒嗒”声,严重时驱动桥抖动,是行星齿轮与半轴齿轮啮合不当。 ⑤汽车加速时,驱动桥内有时发出连续均匀的“嘤嘤”声,且随车速升高而增大,手摸驱动桥轴承处发热。
这是轴承过紧。 ⑥驱动桥内发出杂乱的“哗啦哗啦”声,车速快响声大,且减速时响声更清晰,说明是轴承松旷发响。
二、驱动桥过热故障的诊断打车桥壳温度升,先查油量和油质。疏通桥壳通气孔,调整松紧和间隙。
汽车行驶一定里程后,触摸桥壳很烫手。如果仅在各轴承座部位烫手,是轴承紧;如果触摸桥壳各处均感烫手或较热,是齿轮啮合间隙过小或缺少齿轮油。
2.驱动桥的设计
驱动桥设计应当满足如下基本要求:
1.选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。
2.外形尺寸要小,保证有必要的离地间隙。主要是指主减速器尺寸尽量小。
3.齿轮及其他传动件工作平稳,噪声小。
4.在各种转速和载荷下具有高的传动效率。
5.在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。
6.与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动相协调。
7.结构简单,加工工艺性好,制造容易,拆装、调整方便。
3.后桥(驱动桥)的结构组成是怎样的
驱动桥由主减速器、差速器、半轴和驱动桥壳等组成。
由于现有的农用车都采用后轮驱动,这些部件集中于车辆底盘的后部,故也称后桥。其主要功用是传递扭矩、增大扭矩、改变扭矩的传递方向及降低转速等,驱动桥壳还承受推动车辆前进的力。
在一些采用链传动的三轮农用车上,驱动桥中无主减速器。图3-92为一般农用车驱动桥总体结构示意图。
图3-92 驱动桥结构示意图1.驱动桥壳 2.主减速器 3.差速器 4.半轴 5.轮毂发动机扭矩经变速箱或传动轴输入驱动桥,首先由主减速器增大扭矩,降低转速,并使扭矩方向作90°的改变后经差速器将扭矩分配给左右两根半轴,最后再由半轴和轮毂传给驱动车轮。驱动桥壳由主减速器壳和半轴套管等构成,并由它承受车辆的重力和承受驱动轮上的各种作用力与反作用力矩。
差速器在必要时能使两侧驱动轮以不同转速旋转。驱动桥壳和主减速器壳刚性地连成一体,两侧的半轴和驱动轮不可能在横向平面内作相对摆动。
整个驱动桥通过具有弹性元件的悬架机构与车架连接,构成采用非独立悬架的非断开式驱动桥。这是农用车驱动桥的典型结构形式。
(1)主减速器主减速器又称中央传动,通常是由一对圆锥齿轮组成,其主要功用是降低转速,增大传至车轮的输出扭矩,以保证车辆行驶过程中具有足够的驱动力和适当的行驶速度。在发动机纵向布置的情况下,主减速器还用来改变扭矩传递方向,使之与驱动轮的旋转方向一致。
主减速器的齿轮形式主要有以下几种:①直齿锥齿轮(图3-93a)。这种齿轮加工制造、装配调整较简单,轴向力较小。
但加工所需的最少齿数较多(最少为12),同时参与啮合的齿数少,传动噪声较大,承载能力不够高。因此目前很少采用。
图3-93 主减速器的齿轮形式(a)直齿锥齿轮 (b)螺旋锥齿轮 (c)准双曲面齿轮②螺旋锥齿轮(图3-93b)。它的齿面节线形状是圆弧形或延长外摆线。
圆弧齿在平均半径处的切线与该切点的圆锥母线之间的夹角A称为螺旋角;这种齿轮允许的最少齿数随螺旋角的增大而减少,最少可达5~6个齿。传动中同时参与啮合的齿数较多,故齿轮的承载能力较大,传动比大,运转平稳,噪声较小。
这种齿轮在传动过程中,由于螺旋角的存在,除产生直齿锥齿轮所具有的轴向力外,还有附加轴向力的作用。附加轴向力的大小取决于螺旋角的大小,附加轴向力的方向与齿的螺旋方向和齿轮的旋转方向有关(图3-94)。
从齿轮的锥顶看去,右旋齿顺时针旋转或左旋齿反时针旋转时,其附加轴向力都朝大端(前进时产生这种情况),使合成轴向力增大。右旋齿反时针旋转或左旋齿顺时针旋转时,其附加轴向力朝小端(倒驶时产生这种情况),使合成轴向力减小,这时有使圆锥齿轮啮合间隙减小,甚至被卡住的趋势。
因此,螺旋锥齿轮对轴承的支承刚度和轴向定位的可靠性要求更高。另外,这种齿轮需要专门机床加工。
目前螺旋锥齿轮主减速器在农用车上应用最多。图3-94 螺旋锥齿轮的附加轴向力③准双曲面齿轮。
准双曲面齿轮与螺旋锥齿轮相比,不仅齿轮的工作平稳性更好,轮齿的弯曲强度和接触强度更高,还具有主动齿轮的轴线可相对从动齿轮轴线偏移的特点。当主动锥齿轮轴线向下偏时(图3-93c),在保证一定离地间隙的情况下,可降低主动锥齿轮和传动轴的位置,因而使整车重心降低,有利于提高车辆行驶的稳定性。
但是准双曲面齿轮工作时,齿面间有较大的相对滑动,且齿面间压力很大,齿面油膜易被破坏,必须采用含防刮伤添加剂的双曲面齿轮油,绝不允许用普通齿轮油代替。因此使准双曲面齿轮的应用受到一定的限制。
(2)差速器车辆行驶时(如车辆转弯),两侧车轮在同一时间内驶过的距离不一定相等,因此,在两侧驱动轮之间设置差速器,用差速器连接左右半轴,可使两侧驱动轮以不同的转速旋转,同时传递扭矩,消除车轮的滑转和滑移现象,这就是差速器的功用。目前农用车上采用的差速器种类较多,由于锥齿轮式差速器具有结构简单、尺寸紧凑和工作平稳等优点,因而被广泛应用于农用车的驱动桥中。
图3-95所示为这种差速器的基本结构,主要由差速器壳、半轴、半轴齿轮、行星齿轮和行星齿轮轴组成。两个半轴齿轮分别与左、右半轴通过花键连接,行星齿轮滑套在行星齿轮轴上。
行星齿轮随行星齿轮轴和差速器壳与主减速器大锥齿轮一起旋转(公转),也可以绕行星齿轮轴旋转(自转)。因而当车辆两侧驱动轮遇到不同的阻力时,两半轴就有不同的转速。
图3-95 圆锥齿轮差速器1、4.半轴齿轮 2.行星齿轮轴 3.行星齿轮 5、7.半轴 6.差速器壳当车辆沿平路直线行驶时,两侧驱动轮的运动阻力相同。此时整个差速器连同两根半轴如同一个整体一样地转动,行星齿轮只有随差速器壳的公转,没有自转,两侧驱动轮转速相同。
当车辆转弯时,内侧驱动轮受到的阻力较大,使内侧半轴齿轮转速降低(低于差速器壳的转速)。此时行星齿轮除了随差速器壳的公转之外,还要绕行星齿轮轴自转,于是外侧半轴齿轮(驱动轮)转速增加,其增加值恰好等于内侧转速的降低值,满足了转向要求。
行星齿轮和半轴齿轮装在差速器壳内,行星齿轮的背面即同差速器壳的接触面做成球面形。