1.数学归纳法及其在中学数学中的应用 毕业论文
1.研究的背景、目的及意义
主要写三层意思,
第一,从给学生开阔视野的角度,在中学数学,数学归纳法主要用于证明题,给学生提供一个新的思路解题;
第二,从未来应用的角度,(不太确定文科教材里有没有数学归纳法),对于理科生,将来会涉及到计算机编程,数学归纳法是递归循环的简单形式,有利于学生今后理工科知识的理解和学习
第三,从应试角度,数学归纳法是中学数学的必修课,也是考试必考的知识点,也是比较好拿分的知识点
2.主要研究内容和预期目标
结合背景目的里的三层意思,主要研究内容围绕学生的认知水平,以及学生举一反三的能力来写:
第一,统计数学归纳法在学生中的理解程度,或者说,数学归纳法对大部分学生来说的难易程度,学生在那些方面理解不清楚,这些理解不清楚的情况是属于普遍现象还是个别现象;(比如文科生和理科生理解上有何不同)
预期目标:知道数学归纳法难在哪里,容易在哪里,要有统计数据
第二,学生对数学归纳法的认识,是否有学生认识到数学归纳法在实际生活中的意义,还是应试的情况居多,一些对数学感兴趣的同学有没有觉得数学归纳法给他们带来的方便
第三,学会了数学归纳法的同学是不是能更容易的理解计算机的递归循环算法,例如汉诺塔
3.拟采用方法,步骤
结合2中所说,主要通过统计方法,结合对学生的调查
差不多就这样吧,我不是学教育的,不知道合不合您的要求
2.题目是数学归纳法原理应用及推广的毕业论文
1、数学归纳法证明抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”
抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。
一. 抽屉原理最常见的形式
原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.
原理1 2都是第一抽屉原理的表述
第二抽屉原理:
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能
3.论文:数学归纳法的原理应用及推广
[数学归纳法] 对于包含整数n的公式,即从某一整数起对后面所有整数n都成立的公式,有时可用数学归纳法来证明.其步骤如下:
1o验证n取第一个值n0时(如n0=0, 1或2等)公式成立.
2o假定当n=k时公式成立,验证当n=k+1时公式也成立.
因为公式当n=n0时成立,所以由2o可知,当n=n0+1时公式也成立;再由2o可知,当n=n0+1+1=n0+2时公式也成立,如此继续推下去可知,对一切大于n0的整数n公式都成立.
[抽屉原理]
n+1个物体放入n个抽屉里,至少有一个抽屉有两个以上的物体,这个原理称为抽屉原理,它在证明某些存在性定理时很有用.抽屉原理分以下三种形式:
1on+1个元素分成n组,必有一组至少包含两个元素.
2om个元素分成n组(m>n为正整数),必有一组至少包含个元素([x]表示x的整数部分).
3o无限多个元素分成有限组,必有一组包含无限多个元素.
4.急需一篇关于数学归纳法的形式及其应用的开题报告要有设计论文工作
数学归纳法可以说是贯穿了整个数学的始终,就像我们大家所熟知的奇数与偶数的定义,合数与质数,等腰三角形与等边三角形定义,等差数列与等比数列的定义等等都是由归纳与类比得出来的,在看近几年的高考题时,我看到了几乎每个省每一年的高考题都会涉及用数学归纳法证明或是求解数列的问题.而我们读师范类院校的同学们毕业以后很有可能成为教师,作为教师的职责就是为学生们服务,我想初中的教师就应该研究中考题,高中的教师应该研究高考题,要是以后我们成了一名高中教师,我们就必须去把握高考动向,透彻把握高考考点,研究数学归纳法一方面可以为高考服务.。
5.论文:数学归纳法的原理应用及推广
数学归纳法的原理本质上是用到了自然数集是一个良序集。良序集的定义:设集合(S,≤)为一全序集,≤是其偏序关系,若对任意的S的非空子集,在其序下都有最小元素,则称≤为良序关系,(S,≤)为良序集。
如果里面还有一些名词不懂的话就上百度百科查找,这不是一两句话就能够说清的。
应用的话就是你平时做的那些题目
推广,数学归纳法是应用于自然数集的,把自然数集推广到任意良序集上就是“超限归纳法”,这是最经典的推广。当然前提是你是数学专业的大学生,否则不会学到这么深的。
如果你是高中生的话,把“当n=1时成立…,假设当n=k时成立…就可证明当n=k+1时成立…”推广到“当n=1、2时成立…,假设当n=k时成立…就可证明当n=k+2时成立…”
或者也可以推广为”当n=1时成立…,假设当n≤k时成立…就可证明当n=k+1时成立…”
也就差不多了
6.求高等代数高手帮忙
1.n和(n+1)必然一个是奇数 一个是偶数。
6可以分成2和3
当n=1时,n(n+1)(2n+1)=1*(1+1)(2*1+1)=6
显然能被整除
设n=k时,k(k+1)(2k+1)能被6整除
当n=k+1时,(k+1)[(k+1)+1][2(k+1)+1]
=(k+1)(k+2)(2k+3)
=(k+1)k(2k+3)+2(k+1)(2k+3)
=(k+1)k(2k+1)+2k(k+1)+2(k+1)(2k+3)
=k(k+1)(2k+1)+2(k+1)(3k+3)
=k(k+1)(2k+1)+6(k+1)^2
由假设知k(k+1)(2k+1)+6(k+1)^2能被6整除
所以当n=k+1时,命题成立
所以原命题得证.
2.当n=1时,1+8+27=36,能被9整除
当n=2时,8+27+64=99,能被9整除
.假设当n=n-1时,(n-1)^3+n^3+(n+1)^3,能被9整除
.则,当n=n时,
n^3+(n+1)^3+(n+2)^3
= n^3+(n+1)^3+(n-1+3)^3
=n^3+(n+1)^3+[(n-1)^3+3*3(n-1)^2+3*(n-1)*3^2+3^3]
=n^3+(n+1)^3+(n-1)^3+3*3(n-1)^2+3*(n-1)*3^2+3^3]
等式能被9整除
7.论文英文摘要翻译摘要:数学归纳法是数学中的一个重要证明方法,
Abstract: The mathematical induction is an important mathematical proof, but also an important high school mathematics content, mathematical induction learning has a connecting role in high school, according to the literature, mainly from some aspects to elaborate the application of mathematical inductionin in high school Mathematics, to enhance the students understanding of mathematical induction.Key words: mathematical induction high school connecting link the application勉强用吧。
8.【《数学归纳法的变式和应用敖敏高娃数学科学学院数学与应用数学
The mathematical induction variable type and applicationAoMin GaoWaMathematical sciences mathematics and applied mathematics class have classGuide teacher joss-stick flowerAbstract: in this article, I ChenMeiZhen article "mathematical induction in discrete mathematics application" for main references, combining learned higher algebra and middle school algebra based on knowledge relevant research, discusses the mathematical induction insight topic steps and mathematical induction, and a variety of variants in mathematical induction, and the application of mathematical calculation by specific examples to illustrate.Keywords mathematical induction; The mathematical induction of variable type; Application"。