1.谁有与减速器有关的毕业课题及论文、设计图纸以及答辩的题目
摘要:本课题是有关一种自动洗衣机减速离合器内部减速装置行星轮系减速器的设计。
在洗衣机中使用行星轮系减速器正是利用了行星齿轮传动:体积小,质量小,结构紧凑,承载能力大;传动效率高;传动比较大;运动平稳、抗冲击和震动的能力较强、噪声低的特点。行星轮减速其实就是齿轮减速的原理,它有一个轴线位置固定的齿轮叫中心轮或太阳轮,在太阳轮边上有轴线变动的齿轮,即既作自转又作公转的齿轮叫行星轮,行星轮有支持构件叫行星架,通过行星架将动力传到轴上,再传给其它齿轮.它们由一组若干个齿轮组成一个轮系.只有一个原动件,这种周转轮系称为行星轮系. 关键词:行星轮系减速器、行星轮、中心轮、行星架。
目 录 第一章 概述 ………………………………………………………………………1 第二章 原始数据及系统组成 ……………………………………………………2 (一)原始数据……………………………………………………………………2 (二)系统组成框图………………………………………………………………2 第三章 减速器简介 ………………………………………………………………4 第四章 传动系统的方案设计 ……………………………………………………5 传动方案的分析与拟定…………………………………………………………5 1.对传动方案的要求……………………………………………………………5 2.拟定传动方案…………………………………………………………………5 第五章 行星齿轮传动设计 ………………………………………………………6 (一)行星齿轮传动比和效率计算 ………………………………………………6 (二)行星齿轮传动的配齿计算 …………………………………………………6 1.传动比条件……………………………………………………………………6 2.同轴条件………………………………………………………………………6 3.装配条件………………………………………………………………………7 4.邻接条件………………………………………………………………………7 (三)行星齿轮传动的几何尺寸和啮合参数计算 ………………………………8 (四)行星齿轮传动强度计算及校核……………………………………………10 1、行星齿轮弯曲强度计算及校核……………………………………………10 2、齿轮齿面强度的计算及校核………………………………………………11 3、有关系数和接触疲劳极限…………………………………………………11 (五)行星齿轮传动的受力分析 ………………………………………………13 (六)行星齿轮传动的均载机构及浮动量 ……………………………………15 (七)轮间载荷分布均匀的措施…………………………………………………15 第六章 行星轮架与输出轴间齿轮传动的设计…………………………………17 (一)选择齿轮材料及精度等级 ………………………………………………17 (二)按齿面接触疲劳强度设 …………………………………………………17 (三)按齿根弯曲疲劳强度计算 ………………………………………………18 (四)主要尺寸计算 ……………………………………………………………18 (五)验算齿轮的圆周速度v …………………………………………………18 第七章 行星轮系减速器齿轮输入输出轴的设计………………………………19 (一)减速器输入轴的设计………………………………………………………19 1、选择轴的材料,确定许用应力……………………………………………19 2、按扭转强度估算轴径………………………………………………………19 3、确定各轴段的直径…………………………………………………………19 4、确定各轴段的长度…………………………………………………………19 5、校核轴………………………………………………………………………19 (二)行星轮系减速器齿轮输出轴的设计………………………………………21 1、选择轴的材料,确定许用应力……………………………………………21 2、按扭转强度估算轴径………………………………………………………21 3、确定各轴段的直径…………………………………………………………21 4、确定各轴段的长度…………………………………………………………21 5、校核轴 ………………………………………………………………………22 第八章 结论………………………………………………………………………24 第九章 参考文献…………………………………………………………………25 第十章 设计小结…………………………………………………………………26 第十一章 致谢………………………………………………………………………27 。
2.一级圆柱齿轮减速器毕业设计 范文
OO:348414338 模具类毕业设计1毕业论文 箱体锁扣注射模具设计(内含两份) 2毕业论文 利用Pro/e进行电话机机壳模具设计3毕业设计 冲压工艺及模具设计 4毕业设计 冲裁垫片模具的设计5毕业论文 旋转体的冲压工艺与模具设计 6毕业设计论文(说明书) 封闭板成形模及冲压工艺 7毕业论文 塑料盒模具 8毕业设计 圆球模具设计与制造9毕业设计 罩壳设计说明书 10毕业设计 压铸模设计 11毕业设计 带式输送机的传动装置 12毕业设计 手柄冲孔、落料级进模设计与制造 13毕业设计 硅胶(RB)手机按键模具分析与制作 14毕业设计 注射器盖毕业课程设计说明书 15毕业设计 离合器冲模设计 16毕业设计 托板零件冲模设计 17冲压摸具毕业设计 设计该零件的冲裁模 18 基于PROE的模具设计(附PROE零件图,操作录像) 19毕业论文 盖冒垫片模具设计说明书 20毕业设计 发动机支承限位件的模具设计与制造 21毕业设计论文 塑料模具设计(注射器盖) 22毕业设计 喷墨打印机部件模具设计 23毕业论文 手柄限位杆盒冲压件设计 24毕业设计 冰箱调温按钮塑模设计说明书 25毕业论文 瓶盖拉深模的设计 26毕业论文 箱体锁扣注射模具设计(内含两份) 27毕业论文 密封垫片冲裁模设计 28毕业论文 塑料闸瓦钢背弯曲模设计 29毕业论文 22型车门垫板冲裁模设计与制造 30毕业设计 HFJ6351D型汽车工具箱盖单型腔注塑模设计 31毕业设计论文封闭板成形模及冲压工艺 32毕业设计 “远舰”轿车双摆臂悬架的设计及产品建模 33毕业设计说明书 电池板铝边框冲孔模的设计 34毕业设计 油封骨架冲压模具设计 35水管联接压盖模具设计毕业设计 36毕业设计 外缘翻边圆孔板的塑料模设计 37宁波工程学院机械工程系毕业设计 塑料模 38塑模具设计 39XX轻工职业技术学院毕业设计 管座及其加工模具的设计 40机械工程系模具专业2006届毕业设计说明书:横排地漏封水筒注塑模 机械,机电类毕业设计1毕业设计 可伸缩带式输送机结构设计 2毕业设计 AWC机架现场扩孔机设计3毕业论文复合化肥混合比例装置及PLC控制系统设计 4机械设计课程设计 带式输送机说明书和总装图4毕业设计 冲压废料自动输送装置 5专用机床PLC控制系统的设计 6课程设计 带式输送机传动装置 7毕业论文 桥式起重机副起升机构设计 8毕业论文 两齿辊破碎机设计 9 63CY14-1B轴向柱塞泵改进设计(共32页,19000字) 10毕业设计 连杆孔研磨装置设计 11毕业设计 旁承上平面与下心盘上平面垂直距离检测装置的设计 12.. 机械设计课程设计 带式运输机传动装置设计 13皮带式输送机传动装置的一级圆柱齿轮减速器 14毕业设计(论文) 立轴式破碎机设计 15毕业设计(论文) C6136型经济型数控改造(横向) 16高空作业车工作臂结构设计及有限元分析 17 2007届毕业生毕业设计 机用虎钳设计 18毕业设计无轴承电机的结构设计 19毕业设计 平面关节型机械手设计 20毕业设计 三自由度圆柱坐标型工业机器人 21毕业设计XKA5032A/C数控立式升降台铣床自动换刀设计 22毕业设计 四通管接头的设计 23课程设计:带式运输机上的传动及减速装置 24毕业设计(论文) 行星减速器设计三维造型虚拟设计分析 25毕业设计论文 关节型机器人腕部结构设计 26本科生毕业设计全套资料 Z32K型摇臂钻床变速箱的改进设计/ 27毕业设计 EQY-112-90 汽车变速箱后面孔系钻削组合机床设计 28毕业设计 D180柴油机12孔攻丝机床及夹具设计 29毕业设计 C616型普通车床改造为经济型数控车床 30毕业设计(论文)说明书 中单链型刮板输送机设计 液压类毕业设计1毕业设计 ZFS1600/12/26型液压支架掩护梁设计2毕业设计 液压拉力器 3毕业设计 液压台虎钳设计 4毕业设计论文 双活塞液压浆体泵液力缸设计 5毕业设计 GKZ高空作业车液压和电气控制系统设计 数控加工类毕业设计1课程设计 设计低速级斜齿轮零件的机械加工工艺规程 2毕业设计 普通车床经济型数控改造 3毕业论文 钩尾框夹具设计(镗φ92孔的两道工序的专用夹具) 。
4 机械制造工艺学课程设计 设计“拨叉”零件的机械加工工艺规程及工艺装备(年产量5000件)5课程设计 四工位专用机床传动机构设计 6课程设计说明书 设计“推动架”零件的机械加工工艺及工艺设备 7机械制造技术基础课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4*φ9mm孔的钻床夹具 8械制造技术基础课程设计 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 9毕业设计 轴类零件设计 10毕业设计 壳体零件机械加工工艺规程制订及第工序工艺装备设计 11毕业设计 单拐曲轴零件机械加工规程设计说明书 12机械制造课程设计 机床传动齿轮的工艺规程设计(大批量) 13课程设计 轴零件的机械加工工艺规程制定 14毕业论文 开放式CNC(Computer Numerical Control)系统设计15毕业设计 单拐曲轴工艺流程 16毕业设计 壳体机械加工工艺规程 17毕业设计 连杆机械加工工艺规程 18毕业设计(论文) 子程序在冲孔模生产中的运用——编制数控加工(1#-6#)标模点孔的程序 19毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计 20机械制造技术基础课程设计 设计“减速器传动轴”零件的机械加工。
3.减速器毕业设计
告诉你一个忠告,也可能是忠言逆耳
我就是做机械设计的,也做过或用过减速器
在学校里学的东西对工作有很大的好处,、
你如果想从事自己的本专业
就要靠自己的力量去找资料,求教老师,跟同学探讨,这样你会学到一系列知识、
在设计中,你会发现很多东西你是不了解的,在课题上也是无法获得的,
通过自己查资料,和求教,,你会受益匪浅
这样,在工作中你会得心应手
我也遇到过很多毕业的大学生,他们都在懊悔学校里的课程设计,毕业设计都是
糊弄的,结果害了自己,到工作上什么都不会,还得从头学起,遭人白眼
很痛苦的
前车之鉴,希望你能明白
我想你也是学机械的
你的课题,工作中经常遇到
我不希望我的同行在工作中遇到尴尬
4.直齿圆柱齿轮一级减速器毕业设计那里能找到类似的毕业设计书谁能给
给你做个参考 一、前言 (一) 设计目的: 通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。
(二) 传动方案的分析 机器一般是由原动机、传动装置和工作装置组成。 传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。
传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。
带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。
本设计采用的是单级直齿轮传动。 减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。
二、传动系统的参数设计 原始数据:运输带的工作拉力F=0。 2 KN;带速V=2。
0m/s;滚筒直径D=400mm(滚筒效率为0。96)。
工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。 工作环境:室内灰尘较大,环境最高温度35°。
动力来源:电力,三相交流380/220伏。 1 、电动机选择 (1)、电动机类型的选择: Y系列三相异步电动机 (2)、电动机功率选择: ①传动装置的总效率: =0。
98*0。99 *0。
96*0。99*0。
96 ②工作机所需的输入功率: 因为 F=0。2 KN=0。
2 KN= 1908N =FV/1000η =1908*2/1000*0。 96 =3。
975KW ③电动机的输出功率: =3。975/0。
87=4。488KW 使电动机的额定功率P =(1~1。
3)P ,由查表得电动机的额定功率P = 5。 5KW 。
⑶、确定电动机转速: 计算滚筒工作转速: =(60*v)/(2π*D/2) =(60*2)/(2π*0。2) =96r/min 由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I' =3~6。
取V带传动比I' =2~4,则总传动比理时范围为I' =6~24。故电动机转速的可选范围为n' =(6~24)*96=576~2304r/min ⑷、确定电动机型号 根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。
其主要性能:额定功率:5。5KW,满载转速1440r/min,额定转矩2。
2,质量68kg。 2 、计算总传动比及分配各级的传动比 (1)、总传动比:i =1440/96=15 (2)、分配各级传动比: 根据指导书,取齿轮i =5(单级减速器i=3~6合理) =15/5=3 3 、运动参数及动力参数计算 ⑴、计算各轴转速(r/min) =960r/min =1440/3=480(r/min) =480/5=96(r/min) ⑵计算各轴的功率(KW) 电动机的额定功率Pm=5。
5KW 所以 P =5。5*0。
98*0。99=4。
354KW =4。354*0。
99*0。96 =4。
138KW =4。138*0。
99*0。99=4。
056KW ⑶计算各轴扭矩(N?mm) TI=9550*PI/nI=9550*4。354/480=86。
63N?m =9550*4。138/96 =411。
645N?m =9550*4。 056/96 =403。
486N?m 三、传动零件的设计计算 (一)齿轮传动的设计计算 (1)选择齿轮材料及精度等级 考虑减速器传递功率不大,所以齿轮采用软齿面。 小齿轮选用40Cr调质,齿面硬度为240~260HBS。
大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1。
6~3。2μm (2)确定有关参数和系数如下: 传动比i 取小齿轮齿数Z =20。
则大齿轮齿数: =5*20=100 ,所以取Z 实际传动比 i =101/20=5。05 传动比误差:(i -i)/I=(5。
05-5)/5=1%2。 5% 可用 齿数比: u=i 取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0。
25;压力角 =20°; 则 h *m=3,h )m=3。 75 h=(2 h )m=6。
75,c= c 分度圆直径:d =*20mm=60mm d =3*101mm=303mm 由指导书取 φ 齿宽: b=φ =0。 9*60mm=54mm =60mm , b 齿顶圆直径:d )=66, d 齿根圆直径:d )=52。
5, d )=295。 5 基圆直径: d cos =56。
38, d cos =284。73 (3)计算齿轮传动的中心矩a: a=m/2(Z )=3/2(20 101)=181。
5mm 液压绞车≈182mm (二)轴的设计计算 1 、输入轴的设计计算 ⑴、按扭矩初算轴径 选用45#调质,硬度217~255HBS 根据指导书并查表,取c=110 所以 d≥110 (4。 354/480) 1/3mm=22。
941mm d=22。941*(1 5%)mm=24。
08mm ∴选d=25mm ⑵、轴的结构设计 ①轴上零件的定位,固定和装配 单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定 ②确定轴各段直径和长度 Ⅰ段:d =25mm , L =(1。 5~3)d ,所以长度取L ∵h=2c c=1。
5mm 2h=25 2*2*1。5=31mm 考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。
取套筒长为20mm,。
5.齿轮设计论文关于减速机的
下面是一个例子,你可以根据它代数据(别忘了加分!)传动件设计计算 1. 选精度等级、材料及齿数 1) 材料及热处理; 选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度; 3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的; 4) 选取螺旋角。初选螺旋角β=14° 2.按齿面接触强度设计 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10—21)试算,即 dt≥ 1) 确定公式内的各计算数值 (1) 试选Kt=1.6 (2) 由图10-30选取区域系数ZH=2.433 (3) 由表10-7选取尺宽系数φd=1 (4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62 (5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa (6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa; (7) 由式10-13计算应力循环次数 N1=60n1jLh=60*192*1*(2*8*300*5)=3.32*10e8 N2=N1/5=6.64*107 (8) 由图10-19查得接触疲劳寿命系数KHN1=0.95; KHN2=0.98 (9) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1==0.95*600MPa=570MPa [σH]2==0.98*550MPa=539MPa [σH]=[σH]1+[σH]2/2=554.5MPa 2) 计算 (1) 试算小齿轮分度圆直径d1t d1t≥ = =67.85 (2) 计算圆周速度 v= = =0.68m/s (3) 计算齿宽b及模数mnt b=φdd1t=1*67.85mm=67.85mm mnt= = =3.39 h=2.25mnt=2.25*3.39mm=7.63mm b/h=67.85/7.63=8.89 (4) 计算纵向重合度εβ εβ= =0.318*1*tan14 =1.59 (5) 计算载荷系数K 已知载荷平稳,所以取KA=1 根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同, 故 KHβ=1.12+0.18(1+0.6*1 )1*1 +0.23*10 67.85=1.42 由表10—13查得KFβ=1.36 由表10—3查得KHα=KHα=1.4。
故载荷系数 K=KAKVKHαKHβ=1*1.03*1.4*1.42=2.05 (6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得 d1= = mm=73.6mm (7) 计算模数mn mn = mm=3.74 3.按齿根弯曲强度设计 由式(10—17 mn≥ 1) 确定计算参数 (1) 计算载荷系数 K=KAKVKFαKFβ=1*1.03*1.4*1.36=1.96 (2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88 (3) 计算当量齿数 z1=z1/cos β=20/cos 14 =21.89 z2=z2/cos β=100/cos 14 =109.47 (4) 查取齿型系数 由表10-5查得YFa1=2.724;Yfa2=2.172 (5) 查取应力校正系数 由表10-5查得Ysa1=1.569;Ysa2=1.798 (6) 计算[σF] σF1=500Mpa σF2=380MPa KFN1=0.95 KFN2=0.98 [σF1]=339.29Mpa [σF2]=266MPa (7) 计算大、小齿轮的 并加以比较 = =0.0126 = =0.01468 大齿轮的数值大。
2) 设计计算 mn≥ =2.4 mn=2.5 4.几何尺寸计算 1) 计算中心距 z1 =32.9,取z1=33 z2=16 a =255.07mm a圆整后取255mm 2) 按圆整后的中心距修正螺旋角 β=arcos =13 55'50” 3) 计算大、小齿轮的分度圆直径 d1 =85.00mm d2 =425mm 4) 计算齿轮宽度 b=φdd1 b=85mm B1=90mm,B2=85mm 5) 结构设计 以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。
其他有关尺寸参看大齿轮零件图。
6.急需一篇机械专业的毕业论文的例文
5. 线圈骨架塑料模具 Q_Q专业论文。
13 。
67。
.后面接着输入。
75。
.后面接着输入。
125 (4行连着输入就是我的Q,Q) 6. 保持箱顶门及夹具设计 7. 桥式装卸料机主梁及小车驱动系统设计 8. 液压轴向柱塞泵的噪声分析及结构改进的设计 9. 手机充电器塑料模具 10. 普通开关按钮 11. 新型端盖无毛刺冲孔模具 12. 油封骨架冲压模具设计 13. 卧式铣床主轴悬臂梁系统振动减振问题的模拟实验研究 14. 数控铣床工作台仿真实验系统的开发 15. 数控机床位置精度检测及标准研究 16. 数控机床位置精度的检测及补偿 17. 基于Mastercam的收音机上壳的模具设计与加工 18. 钢珠式减振器在铣床模型机上的减振实验研究 19. 刮板输送机设计 20. MG400920-WD采煤机摇臂设计 21. 矿井卸载装置(液控与电控) 22. 路面切槽机设计2 23. 轮式装载机工作装置设计 24. 提升机维修及铁谱分析技术 25. 支撑掩护式液压支架设计 26. 连续式履带装煤机装运部设计 27. MG250591-WD采煤机的截割部设计 28. JD-0.5型调度绞车 29. 工业对辊型煤成型机设计 30. JSDB-140双速多用绞车 31. 采煤机截割部的设计 32. 仓库大门开闭机构设计 33. 往复式给料机 34. JHB-8型回柱绞车 35. 空气重介流化床干法选煤机结构改进设计 36. 工业型煤成型机的设计 37. 液压挖掘机 38. 提升机故障诊断技术及主轴承磨损的铁谱分析 39. 混凝土喷射机设计 40. 履带式半煤岩掘进机行走部3K行星传动设计 41. 矿井主通风机性能监测系统设计 42. 孔系加工立式组合加工机床设计 43. 汽车式起重机力矩限制器的研制 44. 单曲柄往复式给煤机 45. 防窜仓往复式给煤机 46. GDC956160工业对辊成型机 47. 普通车床的数控改造 48. 液压张紧装置 49. 机液联合张紧装置 50. 双曲柄往复式给料机设计 51. 往复式防窜仓给料机 52. 立柱、千斤顶工作特性仿真计算及刚度校核 53. 带式输送机全自动机械张紧装置 54. 工业型煤成型机的设计1 55. MG300701 WD型采煤机截割部的设计 56. 工业型煤成型机 57. 耙斗装岩机绞车设计 58. 4000TH差动分级齿辊式破碎机 59. MG200475-W型采煤机设计 60. 掩护式液压支架设计1 61. 皮带输送机断带保护器设计 62. 中煤层采煤机截割部设计 63. MG180435-W型液压牵引采煤机截割部设计 64. 提升机铁谱分析技术研究 65. 2吨液压挖掘机的挖掘机构 66. 多刀半自动车床主传动系统的设计 67. 提升机减速器故障诊断分析 68. 履带式半煤岩掘进机设计 69. 大型耙斗装岩机设计 70. ZY86002550型掩护式液压支架 71. 8000kN立柱试验台结构设计 72. 强力分级式双齿辊破碎机设计 73. 基于VB程序的四连杆优化设计 74. 二柱大采高掩护式液压支架设计 75. 对辊成型 76. ZY35002547型掩护式液压支架 77. 工业对辊成型机设计 78. 三通道吊式直线振动筛 79. 综采工作面大型刮板输送机设计与配套 80. 单曲柄往复式给煤机1 81. 中厚煤层采煤机截割部的设计 82. 工业对辊成型机设计1 83. 绞车试验台(液压系统) 84. 叉车设计 85. 车载提升机的设计及研究 86. 道路地下打孔机 87. 液压绞车 88. 可伸缩带式给料机设计 89. 皮带机传动系统 90. 采煤机牵引部设计 91. 掩护式液压支架设计 92. ZFS10000―2545中位放顶煤液压支架。
7.毕业论文: 二级圆锥圆柱齿轮减速设计
圆锥圆柱齿轮减速器为输入、输出轴位于垂直状态的外合齿轮传动机构,主要传动零件采用优质合金钢制造。
齿轮经渗碳、淬火、磨齿工艺制造,6级精度 可以给你设计数据作参考,图纸和说明书自己动手,学机械的,这点都搞不定还能做什么呢?? 如果你要,就发信息给我。 已知:运输带F=2600N,V=1.5m/s,卷筒直径D=270mm。
1、输出功率P2=F*V=2600*1.5=3.9kw 卷筒转速N2=(60000*V)/(π*D)=(60000*1.5)/(π*270)=106.2r/min 输出转矩T2=9550*P2/N2=9550*3.9/106.2=350.7N.m 2、根据负载选择电动机。 双级圆锥圆柱齿轮传动的效率为0.94~0.95,取0.94 则电机功率P1>=P2/0.94=3.9/0.94=4.15kw 查表:选择Y系列电机,型号为Y132S-4,额定功率P1=5.5kw,转速n1=1440r/min。
则总传动比i=N1/N2=1440/106.2=13.56 3、传动比分配: 因为速度、载荷都不大,采用二级直齿圆锥圆柱齿轮传动。 高速级传动为直齿锥齿轮,为避免锥齿轮尺寸过大,取传动比i1=0.25*i=3.14,取i1=3 则i2=i/i1=13.56/3=4.52。
高速级锥齿轮设计计算: 1、小齿轮材料选用40Cr淬火,硬度48-55HRC 大齿轮选用45调质,硬度217-255HBS 2、小齿轮转矩T1=9550*P1/N1=9550*5.5/1440=36.48 N.m 按齿面接触强度初步估算: 公式:d'e1=1951*((K*T1)/(u*σ'HP^2))^(1/3) 载荷系数k=1.2 齿数比u=i1=3 查小齿轮齿面接触疲劳极限σHlim=1200MPa σ'HP=σHlim/S'H=1200/1.1=1090MPa (S'H估算时取1.1) 则d'e1=1951*((1.2*34.48)/(3*1090^2))^(1/3)=45.18mm 3、查手册,取小齿轮齿轮Z1=19 则Z2=i1*Z1=19*3=57 分锥角:δ1=arctan(z1/z2)=arctan(19/57)=18°26'6" δ2=90°-δ1=71°33'54" 大端模数 :me=d'e1/z1=56.46/19=2.38,取标准值me=2.5mm 大端度圆直径:de1=me*z1=2.5*19=47.5mm de2=me*z2=2.5*57=142.5mm 外锥距Re=de1/2sinδ1=47.5/(2*sinδ1)=75.104mm 齿宽b=0.3Re=0.3*75.104=22.5mm,取23mm 中点模数M=me*(1-0.5*0.3)=2.125mm 中点分度圆直径dm1=2.125*19=40.375mm dm1=2.125*57=124.125mm 当量齿数Zv1=z1/cosδ1=20.028 Zv2=z2/cosδ2=180.25 变位系数为0 其他结构尺寸(略) 4、较核齿面接触疲劳强度(略) 5、工作图(略) 圆柱齿轮传动设计计算: 一、设计参数 传递功率 P=5.5(kW) 传递转矩 T=109.42(N·m) 齿轮1转速 n1=480(r/min) 齿轮2转速 n2=106.2(r/min) 传动比 i=4.52 原动机载荷特性 SF=均匀平稳 工作机载荷特性 WF=均匀平稳 预定寿命 H=40000(小时) 二、布置与结构 闭式,对称布置 三、材料及热处理 硬齿面,热处理质量级别 MQ 齿轮1材料及热处理 20Cr 齿轮1硬度取值范围 HBSP1=56~62 齿轮1硬度 HBS1=59 齿轮2材料及热处理 =45调质 齿轮2硬度取值范围 HBSP2=217~255HBS 齿轮2硬度 HBS2=230HBS 四、齿轮精度:7级 五、齿轮基本参数 模数(法面模数) Mn=2.5 齿轮1齿数 Z1=17 齿轮1变位系数 X1=0.00 齿轮1齿宽 B1=25.00(mm) 齿轮1齿宽系数 Φd1=0.588 齿轮2齿数 Z2=77 齿轮2变位系数 X2=0.00 齿轮2齿宽 B2=20.00(mm) 齿轮2齿宽系数 Φd2=0.104 总变位系数 Xsum=0.000 标准中心距 A0=117.50000(mm) 实际中心距 A=117.50000(mm 齿轮1分度圆直径 d1=42.50000(mm) 齿轮1齿顶圆直径 da1=47.50000(mm) 齿轮1齿根圆直径 df1=36.25000(mm) 齿轮1齿顶高 ha1=2.50000(mm) 齿轮1齿根高 hf1=3.12500(mm) 齿轮1全齿高 h1=5.62500(mm) 齿轮1齿顶压力角 αat1=32.777676(度) 齿轮2分度圆直径 d2=192.50000(mm) 齿轮2齿顶圆直径 da2=197.50000(mm) 齿轮2齿根圆直径 df2=186.25000(mm) 齿轮2齿顶高 ha2=2.50000(mm) 齿轮2齿根高 hf2=3.12500(mm) 齿轮2全齿高 h2=5.62500(mm) 齿轮2齿顶压力角 αat2=23.665717(度) 齿轮1分度圆弦齿厚 sh1=3.92141(mm) 齿轮1分度圆弦齿高 hh1=2.59065(mm) 齿轮1固定弦齿厚 sch1=3.46762(mm) 齿轮1固定弦齿高 hch1=1.86889(mm) 齿轮1公法线跨齿数 K1=2 齿轮1公法线长度 Wk1=11.66573(mm) 齿轮2分度圆弦齿厚 sh2=3.92672(mm) 齿轮2分度圆弦齿高 hh2=2.52003(mm) 齿轮2固定弦齿厚 sch2=3.46762(mm) 齿轮2固定弦齿高 hch2=1.86889(mm) 齿轮2公法线跨齿数 K2=9 齿轮2公法线长度 Wk2=65.42886(mm) 齿顶高系数 ha*=1.00 顶隙系数 c*=0.25 压力角 α*=20(度) 端面齿顶高系数 ha*t=1.00000 端面顶隙系数 c*t=0.25000 端面压力角 α*t=20.0000000(度) 六、强度校核数据 齿轮1接触强度极限应力 σHlim1=1250.0(MPa) 齿轮1抗弯疲劳基本值 σFE1=816.0(MPa) 齿轮1接触疲劳强度许用值 [σH]1=1576.3(MPa) 齿轮1弯曲疲劳强度许用值 [σF]1=873.5(MPa) 齿轮2接触强度极限应力 σHlim2=1150.0(MPa) 齿轮2抗弯疲劳基本值 σFE2=640.0(MPa) 齿轮2接触疲劳强度许用值 [σH]2=1450.2(MPa) 齿轮2弯曲疲劳强度许用值 [σF]2=685.1(MPa) 接触强度用安全系数 SHmin=1.00 弯曲强度用安全系数 SFmin=1.40 接触强度计算应力 σH=1340.5(MPa) 接触疲劳强度校核 σH≤[σH]=满足 齿轮1弯曲疲劳强度计算应力 σF1=455.2(MPa) 齿轮2弯曲疲劳强度计算应力 σF2=398.3(MPa) 齿轮1弯曲疲劳强度校核 σF1≤[σ。
8.哪位大哥帮忙弄一份减速器的论文
1.国外减速器现状?齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。
当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。
但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。最近报导,日本住友重工研制的FA型高精度减速器,美国Alan-Newton公司研制的X-Y式减速器,在传动原理和结构上与本项目类似或相近,都为目前先进的齿轮减速器。
当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。因此,除了不断改进材料品质、提高工艺水平外,还在传动原理和传动结构上深入探讨和创新,平动齿轮传动原理的出现就是一例。
减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。目前,超小型的减速器的研究成果尚不明显。
在医疗、生物工程、机器人等领域中,微型发动机已基本研制成功,美国和荷兰近期研制的分子发动机的尺寸在纳米级范围,如能辅以纳米级的减速器,则应用前景远大。 2.国内减速器现状?国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。
另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。国内使用的大型减速器(500kw以上),多从国外(如丹麦、德国等)进口,花去不少的外汇。
60年代开始生产的少齿差传动、摆线针轮传动、谐波传动等减速器具有传动比大,体积小、机械效率高等优点?。但受其传动的理论的限制,不能传递过大的功率,功率一般都要小于40kw。
由于在传动的理论上、工艺水平和材料品质方面没有突破,因此,没能从根本上解决传递功率大、传动比大、体积小、重量轻、机械效率高等这些基本要求。90年代初期,国内出现的三环(齿轮)减速器,是一种外平动齿轮传动的减速器,它可实现较大的传动比,传递载荷的能力也大。
它的体积和重量都比定轴齿轮减速器轻,结构简单,效率亦高。由于该减速器的三轴平行结构,故使功率/体积(或重量)比值仍小。
且其输入轴与输出轴不在同一轴线上,这在使用上有许多不便。北京理工大学研制成功的"内平动齿轮减速器"不仅具有三环减速器的优点外,还有着大的功率/重量(或体积)比值,以及输入轴和输出轴在同一轴线上的优点,处于国内领先地位。
国内有少数高等学校和厂矿企业对平动齿轮传动中的某些原理做些研究工作,发表过一些研究论文,在利用摆线齿轮作平动减速器开展了一些工作。二、平动齿轮减速器工作原理简介,平动齿轮减速器是指一对齿轮传动中,一个齿轮在平动发生器的驱动下作平面平行运动,通过齿廓间的啮合,驱动另一个齿轮作定轴减速转动,实现减速传动的作用。
平动发生器可采用平行四边形机构,或正弦机构或十字滑块机构。本成果采用平行四边形机构作为平动发生器。
平动发生器可以是虚拟的采用平行四边形机构,也可以是实体的采用平行四边形机构。有实用价值的平动齿轮机构为内啮合齿轮机构,因此又可以分为内齿轮作平动运动和外齿轮作平动运动两种情况。
外平动齿轮减速机构,其内齿轮作平动运动,驱动外齿轮并作减速转动输出。该机构亦称三环(齿轮)减速器。
由于内齿轮作平动,两曲柄中心设置在内齿轮的齿圈外部,故其尺寸不紧凑,不能解决体积较大的问题。?内平动齿轮减速,其外齿轮作平动运动,驱动内齿轮作减速转动输出。
由于外齿轮作平动,两曲柄中心能设置在外齿轮的齿圈内部,大大减少了机构整体尺寸。由于内平动齿轮机构传动效率高、体积小、输入输出同轴线,故由广泛的应用前景。
三、本项目的技术特点与关键技术? 1.本项目的技术特点,本新型的"内平动齿轮减速器"与国内外已有的齿轮减速器相比较,有如下特点:(1)传动比范围大,自I=10起,最大可达几千。若制作成大传动比的减速器,则更显示出本减速器的优点。
(2)传递功率范围大:并可与电动机联成一体制造。(3)结构简单、体积小、重量轻。
比现有的齿轮减速器减少1/3左右。(4)机械效率高。
啮合效率大于95%,整机效率在85%以上,且减速器的效率将不随传动比的增大而降低,这是别的许多减速器所不及的。 (5)本减速器的输入轴和输出轴是在同一轴线上。
本减速器与其它减速器的性能比较见表1。因缺少数据,表中所列的各减速器的功率/重量比是最优越的。
表1?各类减速器比较 型号 功率(kw) 减速比 质量(kg) QI-450? 93 31.5 1820 ZSY-250? 95 31.5 540 NGW-92 88.1 31.5 577 SEW(德国)? 90 28.61 1300 NP-100? 100 30 400 注:NP-100为内平动齿轮减速器,SEW减速器的质量含电机。2.本项目的关键技术?由图2可知,"内平动齿轮减速器"是由内齿轮Z2、外齿轮Z1和平行四边形机构组合而成的。
它的传动原理是:电机输入旋转运动,外齿轮作平行移动,其圆心的运动轨迹是一个圆,与之啮合的内齿轮则作定轴转动。因为外齿。
9.求一份单级圆柱齿轮减速器设计论文谢谢了
机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器目 录 设计任务书……………………………………………………1 传动方案的拟定及说明………………………………………4 电动机的选择…………………………………………………4 计算传动装置的运动和动力参数……………………………5 传动件的设计计算……………………………………………5 轴的设计计算…………………………………………………8 滚动轴承的选择及计算………………………………………14 键联接的选择及校核计算……………………………………16 连轴器的选择…………………………………………………16 减速器附件的选择……………………………………………17 润滑与密封……………………………………………………18 设计小结………………………………………………………18 参考资料目录…………………………………………………18 机械设计课程设计任务书 题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器 一. 总体布置简图 1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器 二. 工作情况: 载荷平稳、单向旋转 三. 原始数据 鼓轮的扭矩T(N•m):850 鼓轮的直径D(mm):350 运输带速度V(m/s):0。
7 带速允许偏差(%):5 使用年限(年):5 工作制度(班/日):2 四. 设计内容 1。 电动机的选择与运动参数计算; 2。
斜齿轮传动设计计算 3。 轴的设计 4。
滚动轴承的选择 5。 键和连轴器的选择与校核; 6。
装配图、零件图的绘制 7。 设计计算说明书的编写 五. 设计任务 1. 减速器总装配图一张 2. 齿轮、轴零件图各一张 3. 设计说明书一份 六. 设计进度 1、第一阶段:总体计算和传动件参数计算 2、第二阶段:轴与轴系零件的设计 3、第三阶段:轴、轴承、联轴器、键的校核及草图绘制 4、第四阶段:装配图、零件图的绘制及计算说明书的编写 传动方案的拟定及说明 由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。
故只要对本传动机构进行分析论证。 本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。
结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。 电动机的选择 1.电动机类型和结构的选择 因为本传动的工作状况是:载荷平稳、单向旋转。
所以选用常用的封闭式Y(IP44)系列的电动机。 2.电动机容量的选择 1) 工作机所需功率Pw Pw=3。
4kW 2) 电动机的输出功率 Pd=Pw/η η= =0。 904 Pd=3。
76kW 3.电动机转速的选择 nd=(i1'•i2'…in')nw 初选为同步转速为1000r/min的电动机 4.电动机型号的确定 由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。 基本符合题目所需的要求 计算传动装置的运动和动力参数 传动装置的总传动比及其分配 1.计算总传动比 由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为: i=nm/nw nw=38。
4 i=25。14 2.合理分配各级传动比 由于减速箱是同轴式布置,所以i1=i2。
因为i=25。14,取i=25,i1=i2=5 速度偏差为0。
5%各轴转速、输入功率、输入转矩 项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮 转速(r/min) 960 960 192 38。4 38。
4 功率(kW) 4 3。96 3。
84 3。72 3。
57 转矩(N•m) 39。8 39。
4 191 925。2 888。
4 传动比 1 1 5 5 1 效率 1 0。 99 0。
97 0。97 0。
97 传动件设计计算 1. 选精度等级、材料及齿数 1) 材料及热处理; 选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。 2) 精度等级选用7级精度; 3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的; 4) 选取螺旋角。
初选螺旋角β=14° 2.按齿面接触强度设计 因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算 按式(10—21)试算,即 dt≥ 1) 确定公式内的各计算数值 (1) 试选Kt=1。 6 (2) 由图10-30选取区域系数ZH=2。
433 (3) 由表10-7选取尺宽系数φd=1 (4) 由图10-26查得εα1=0。75,εα2=0。
87,则εα=εα1+εα2=1。 62 (5) 由表10-6查得材料的弹性影响系数ZE=189。
8Mpa (6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa; (7) 由式10-13计算应力循环次数 N1=60n1jLh=60*192*1*(2*8*300*5)=3。 32*10e8 N2=N1/5=6。
64*107 (8) 由图10-19查得接触疲劳寿命系数KHN1=0。95;KHN2=0。
98 (9) 计算接触疲劳许用应力 取失效概率为1%,安全系数S=1,由式(10-12)得 [σH]1==0。 95*600MPa=570MPa [σH]2==0。
98*550MPa=539MPa [σH]=[σH]1+[σH]2/2=554。5MPa 2) 计算 (1) 试算小齿轮分度圆直径d1t d1t≥ = =67。
85 (2) 计算圆周速度 v= = =0。68m/s (3) 计算齿宽b及模数mnt b=φdd1t=1*67。
85mm=67。85mm mnt= = =3。
39 h=2。25mnt=2。
25*3。39mm=7。
63mm b/h=67。85/7。
63=8。89 (4) 计算纵向重合度εβ εβ= =0。
318*1*tan14 =1。 59 (5) 计算载荷系数K 已知载荷平稳,所以取KA=1 根据v=0。
68m/s,7级精度,由图10—8查。
转载请注明出处众文网 » 减速器精度检测毕业论文