1.圆 锥 曲 线 论文
圆 锥 曲 线 的 光 学 性 质 及 其 应 用 历史上第一个考查圆锥曲线的是梅纳库莫斯(公元前375年—325年);大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线。
他们两位对圆锥曲线的研究是很实在的:考察不同倾斜角的平面截圆锥其切口所得到的曲线,也就是说如果切口与底面所夹的角小于母线与底面所夹的角,则切口呈现椭圆;若两角相等,则切口呈现抛物线;若前者大于后者,则切口呈现双曲线。并且,阿波罗尼奥还进一步研究了这些圆锥曲线的光学性质,比如椭圆,他发现如果把椭圆焦点F一侧做成镜面,并在F处放置光源,那么经过椭圆镜反射的光线全部通过另一个焦点F。
热也和光一样发生反射,所以这时便会被烤焦,这也就是焦点名称的由来。据说这一发现是他在研究椭圆的作法(也就是现行教材中一开始介绍的作法)时得出的。
而圆锥曲线真正从后台走上前台,从学术的象牙塔中进入现实生活的世界里,应归功于德国天文学家开普勒(公元1571年—1630年),开普勒在长期的天文观察及对记录的数据分析中,发现了著名的“开普勒三定律”,其中第一条是:“行星在包含太阳的平面内运动,划出以太阳为焦点的椭圆”,就这样,梅纳库莫斯和阿波罗尼奥出于数学爱好而研究的曲线在近2000年之后于天文学的舞台上登场了。后来哈雷又利用圆锥曲线理论及计算方法准确地预测到哈雷彗星与地球最近点的时刻,1758年在哈雷逝世16年之后,哈雷彗星与地球如期而遇,这引起了全欧洲、乃至全世界的轰动,也进一步推动人们对圆锥曲线研究兴趣的提升。
圆锥曲线的光学性质有大致有三点,即椭圆的光学性质、双曲线的光学性质和抛物线的光学性质。 1:椭圆的光学性质:从椭圆的一个焦点发出的光线或声波在经过椭圆周上反射后,反射都经过椭圆的另一个焦点。
(如图1所示) 在圆锥曲线的定义中的定点,之所以称作为焦点,是源于它们的光学上聚焦性质.设一个镜面的轴截面的廓线是椭圆,那么当你把一个射线源置于定点F1处,所有射线通过椭圆反射后,都会集中到另一个定点F2;反过来也是一样(见图7-78).射线集中现象在光学上称为聚焦,因此自然称这两个定点F1,F2为焦点了.椭圆的这种光线特性,常被用来设计一些照明设备或聚热装置.例如在F1处放置一个热源,那么红外线也能聚焦于F2处,对F2处的物体加热. 图1 2:双曲线的光学性质:如果光源或声源放在双曲线的一个焦点F2处,光线或声波射到双曲线靠近F2的一支上,经过反射以后,就从另一个焦点F1处射出来一样。(如图2所示) 双曲线的光学性质同样也有聚焦性质,但它是反向虚聚焦,即置于双曲线一个焦点处的射线源,被双曲线反射后,其反射线的反向延长线,必定经过另一个焦点双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用 图2 3:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴。
(如图3所示) 把抛物线看作为一个焦点在无穷远处的“椭圆”,椭圆从一个焦点处发出的射线,聚焦到另一个焦点的椭圆的光学特性,表现在抛物线上,形式就与椭圆大不相同了:设想射线源在位于无穷远处的那个焦点处,无穷远处出发的射线,经抛物线反射后,到达位于有限位置的另一个焦点,但无穷远处出发的射线,在处于有限位置的你看来,只能是平行于对称轴的射线束(例如太阳虽然离开地球很遥远,但毕竟还没有在无穷远处,就这样,我们都已经觉得太阳光线是平行的,而不是像灯泡那样是散射的光线.)因此平行于对称轴的射线经抛物线反射,必定聚焦于焦点(见图7-80).反之把射线源置于抛物线的焦点(它在有限位置处),经抛物线反射后,所有的射线也要聚到在无穷远处的那个焦点去,因此反射射线也只能是平行于对称轴的,即从焦点发出的射线,经抛物线反射后成为平行于对称轴的射线束. 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样的接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 图3 这三个圆锥曲线的光学性质在生活中有着很广泛的应用。 一只小灯泡(图4)发出的光,会分散地射向各方,但把它装在手电筒(图5)里,经适当的调节,就能射出一束比较强的平行光,这是为什么呢? 原因就是手电筒内,在小灯泡后面有一个反光镜,它的形状是抛物面,而它的作用就是能把由焦点发出的光线,以平行光(平行抛物面的轴)射出。
探照灯(图6)也是利用这个原。
2.用平面截得圆柱或圆锥得什么曲线,论文
论文?
以下是我自己刚想的.希望对你有帮助O(∩_∩)O~
圆柱:1.水平切是圆形2.垂直切是长方形.3过两个底面斜切是平行四边形(在底面上切线长度相等)4.过一个底面斜切是半个椭圆(与另一个底面无焦点)5.过两个底面斜切也可能是椭圆的两条弧(在底面上切线长度不相等)6.在圆柱中间切是椭圆(与两底面无焦点)
圆锥:1.水平切是圆形2.过顶点切是等腰三角形3.不交于底面切是椭圆4.交于底面不交顶点是半个椭圆
我就想到这些了.希望大家补充
3.圆锥曲线在生活中的应用
生活中的椭圆:油罐车的横截面。
圆柱形的容器在同样容器的要求下,它的表面积最小也就是容器所用的材料最少,在装入物品后尤其是液体,对罐内壁各部分的受力大小情况也比较平均,而在高度和宽度(即车的允许高度和车的宽度)都有限制的情况下,其横截面作成椭圆形就可以达到既节省了罐体材料,也保证了容积,由利用了有限的“空间”和保证了罐体的稳定性。
双曲线的应用:火电厂及核电站的冷却塔
冷却塔从底部到中部直径变小,是将蒸汽抽到塔内,防止底部逸出,而上部直径变大,可以降低上升到顶部热气的流动速度,从而降低抽力,使蒸汽尽可能的留在塔内,提高冷却回收率。
抛物线的应用:美丽的赵州桥
采用抛物线的结构使得赵州桥用料精简,结构稳定坚固,赵州桥距离现在1400多年,经历了10次水灾,8次战乱,和多次地震,著名桥梁专家茅以升说过:先不管桥的内部结构,仅就他能够存在1400多年就说明了一切。
探照灯截面
由抛物线绕其轴旋转,可得到一个叫做旋转物面的曲面,他也有一条轴,即抛物线的轴,在这个轴上有一个奇妙的焦点,任何一条过焦点的直线反射出来以后,都将成为平行于轴的直线。这就是我们为什么要把探照灯反光镜做成旋转抛物面的道理。
以上的例子都比较常见,相信你可以搜到需要的图片。
孩子,您是巴蜀的吧。。巴蜀的孩子伤不起啊。。。因为我也是。
4.圆锥曲线的各种定义圆,椭圆,双曲线,抛物线的各种定义.包括第一
用一个平面去截一个圆锥面,得到的交线就称为圆锥曲线.通常提到的圆锥曲线包括椭圆,双曲线和抛物线,但严格来讲,它还包括一些退化情形.具体而言: 1) 当平面与圆锥面的母线平行,且不过圆锥顶点,结果为抛物线.2) 当平面与圆锥面的母线平行,且过圆锥顶点,结果退化为一条直线. 3) 当平面只与圆锥面一侧相交,且不过圆锥顶点,结果为椭圆.4) 当平面只与圆锥面一侧相交,且不过圆锥顶点,并与圆锥面的对称轴垂直,结果为圆.5) 当平面只与圆锥面一侧相交,且过圆锥顶点,结果退化为一个点.6) 当平面与圆锥面两侧都相交,且不过圆锥顶点,结果为双曲线的一支(另一支为此圆锥面的对顶圆锥面与平面的交线).7) 当平面与圆锥面两侧都相交,且过圆锥顶点,结果为两条相交直线.。
5.圆锥曲线的发展我需要关于圆锥曲线的关于其发展、不断被改进的具体
双曲线的历史 Menaechmus 据信,第一个给双曲线定义的人是Menaechmus。
他的定义与现在通行的不同。按其定义,切割圆锥的平面须垂直于圆锥面的一根直线(准线)。
圆锥曲线的形状由平面对圆锥定点的角度决定:角度比锥角尖的是椭圆,角度等于锥角的是抛物线,角度比锥角钝的是双曲线。 注意,这样,圆不能定义所以不被认作圆锥曲线。
据说Euclid(欧几里得)写过4本双曲线的书,但都失传了。据说Archimedes (阿基米德)研究过双曲线。
Apollonius of Perga 古埃及对双曲线的最大进步来自Apollonius of Perga。 他有8章的《双曲线》总结和发展了双曲线的知识。
他简化了双曲线的分析。用他的分析,可以看出,任意平面与圆锥相切,不论平面的角度如何,都可以得到双曲线,这也是现今的定义。
Pappus 发现了双曲线的焦点,并说到准线的概念。 Al-Kuhi伊斯兰数学家Al-Kuhi在1000CE记述了双曲线的作图仪器。
Omar Khayyám Apollonius的文章被翻译成阿拉伯文。波斯人应用了这些理论。
最著名的是波斯数学家和诗人Omar Khayyám用双曲线解代数方程。 欧洲 Johannes Kepler(开普勒)用连续性发展了双曲线,是极限概念的先驱。
Girard Desargues and Blaise Pascal (帕斯卡)用投影几何学发展了双曲线理论。特别是,帕斯卡发现了【六边形定律】,即内接任意双曲线的任意六边形,六边形对边延伸的交点在同一直线上。
由此定律,可以推导出双曲线的很多其他特性。 同时René Descartes (笛卡尔)用他创建的解析几何学研究双曲线。
并进一步用双曲线几何问题联姻代数问题。 翻译自网络百科辞典 。