1.求一篇:图像识别的主要方法及其特点的比较的开题报告
利用计算机进行遥感信息的自动提取则必须使用数字图像,由于地物在同一波段、同一地物在不同波段都具有不同的波谱特征,通过对某种地物在各波段的波谱曲线进行分析,根据其特点进行相应的增强处理后,可以在遥感影像上识别并提取同类目标物。
早期的自动分类和图像分割主要是基于光谱特征,后来发展为结合光谱特征、纹理特征、形状特征、空间关系特征等综合因素的计算机信息提取。 常用的信息提取方法是遥感影像计算机自动分类。
首先,对遥感影像室内预判读,然后进行野外调查,旨在建立各种类型的地物与影像特征之间的对应关系并对室内预判结果进行验证。工作转入室内后,选择训练样本并对其进行统计分析,用适当的分类器对遥感数据分类,对分类结果进行后处理,最后进行精度评价。
遥感影像的分类一般是基于地物光谱特征、地物形状特征、空间关系特征等方面特征,目前大多数研究还是基于地物光谱特征。 在计算机分类之前,往往要做些预处理,如校正、增强、滤波等,以突出目标物特征或消除同一类型目标的不同部位因照射条件不同、地形变化、扫描观测角的不同而造成的亮度差异等。
利用遥感图像进行分类,就是对单个像元或比较匀质的像元组给出对应其特征的名称,其原理是利用图像识别技术实现对遥感图像的自动分类。计算机用以识别和分类的主要标志是物体的光谱特性,图像上的其它信息如大小、形状、纹理等标志尚未充分利用。
计算机图像分类方法,常见的有两种,即监督分类和非监督分类。监督分类,首先要从欲分类的图像区域中选定一些训练样区,在这样训练区中地物的类别是已知的,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类。
它是一种由已知样本,外推未知区域类别的方法;非监督分类是一种无先验(已知)类别标准的分类方法。对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。
与监督分类相比,非监督分类具有下列优点:不需要对被研究的地区有事先的了解,对分类的结果与精度要求相同的条件下,在时间和成本上较为节省,但实际上,非监督分类不如监督分类的精度高,所以监督分类使用的更为广泛。 细小地物在影像上有规律地重复出现,它反映了色调变化的频率,纹理形式很多,包括点、斑、格、垅、栅。
在这些形式的基础上根据粗细、疏密、宽窄、长短、直斜和隐显等条件还可再细分为更多的类型。每种类型的地物在影像上都有本身的纹理图案,因此,可以从影像的这一特征识别地物。
纹理反映的是亮度(灰度)的空间变化情况,有三个主要标志:某种局部的序列性在比该序列更大的区域内不断重复;序列由基本部分非随机排列组成;各部分大致都是均匀的统一体,在纹理区域内的任何地方都有大致相同的结构尺寸。这个序列的基本部分通常称为纹理基元。
因此可以认为纹理是由基元按某种确定性的规律或统计性的规律排列组成的,前者称为确定性纹理(如人工纹理),后者呈随机性纹理(或自然纹理)。对纹理的描述可通过纹理的粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等这些定性或定量的概念特征来表征。
相应的众多纹理特征提取算法也可归纳为两大类,即结构法和统计法。结构法把纹理视为由基本纹理元按特定的排列规则构成的周期性重复模式,因此常采用基于传统的Fourier频谱分析方法以确定纹理元及其排列规律。
此外结构元统计法和文法纹理分析也是常用的提取方法。结构法在提取自然景观中不规则纹理时就遇到困难,这些纹理很难通过纹理元的重复出现来表示,而且纹理元的抽取和排列规则的表达本身就是一个极其困难的问题。
在遥感影像中纹理绝大部分属随机性,服从统计分布,一般采用统计法纹理分析。目前用得比较多的方法包括:共生矩阵法、分形维方法、马尔可夫随机场方法等。
共生矩阵是一比较传统的纹理描述方法,它可从多个侧面描述影像纹理特征。 图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,此处特性可以是像素的灰度、颜色、纹理等预先定义的目标可以对应单个区域,也可以对应多个区域。
图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征抽取和参数测量的将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,彼此是紧密关联的。图像分割在一般意义下是十分困难的问题,目前的图像分割一般作为图像的前期处理阶段,是针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。
图像分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素。
2.图像的特征提取有什么用的
你这个问题至少应该说明: - 你要处理什么图像, 是静态的单帧图呢,还是动态的视频? - 处理的目的是什么,是做图像测量,还是对象识别?或者是运动检测? - 为了实现目标,需要提取的特征,以及各个特征的精度要求。
就象tokushimajp说的,图像特征太多了,你最好先找本基本的数字图像处理的书,把基本概念看明白了再提问,这样别人也好帮你解决问题。推荐你看北理工贾云得的机器视觉这本书,网上很好下载。
论文和程序实例我都有,不过看你这样慌不择路的,给你也是害了你。
3.特征提取与图像处理的作品目录
第1章 绪论
1.1 概述
1.2 人类视觉和计算机视觉
1.3 人类视觉系统
1.4 计算机视觉系统
1.5 数学系统
1.6 相关文献资料
1.7 小结
1.8 参考文献
第2章 图像﹑采样和频域处理
2.1 概述
2.2 图像形成
2.3 傅里叶变换
2.4 采样标准
2.5 离散傅里叶变换(discrete Fouriertransform)
2.6 傅里叶变换的其他特性
2.7 傅里叶以外的其他变换
2.8 频域特性的应用
2.9 更多阅读资料
2.1 0参考文献
第3章 基本图像处理运算
3.1 概述
3.2 直方图
3.3 点算子
3.4 群运算
3.5 其他统计算子
3.6 数学形态学
3.7 更多阅读资料
3.8 参考文献
第4章 低层次特征提取(包括边缘检测)
4.1 概述
4.2 一阶边缘检测算子
4.3 二阶边缘检测算子
4.4 其他边缘检测算子
4.5 边缘检测算子的比较
4.6 关于边缘检测的更多阅读资料
4.7 相位一致性
4.8 定位特征提取
4.9 描述图像运动
4.10 小结
4.11 参考文献
第5章 形状匹配的特征提取
5.1 概述
5.2 阈值处理和差分
5.3 模板匹配
5.4 霍夫变换
5.5 广义霍夫变换
5.6 霍夫变换的其他扩展
5.7 更多阅读资料
5.8 参考文献
第6章 弹性形状提取(蛇模型及其他方法)
6.1 概述
6.2 可变形模板
6.3 主动轮廓(蛇模型)
6.4 形状骨架化
6.5 弹性形状模型:主动形状和主动外观
6.6 更多阅读资料
6.7 参考文献
第7章 目标描述
7.1 概述
7.2 边界描述
7.3 区域描述符
7.4 更多阅读资料
7.5 参考文献
第8章 纹理描述﹑分割和分类基础
8.1 概述
8.2 什么是纹理?
8.3 纹理描述
8.4 分类
8.5 分割处理
8.6 更多阅读资料
8.7 参考文献
第9章 附录1:工作表实例
9.1 第3章 的Mathcad工作表实例
9.2 第4章 的MATLAB工作表实例
第10章 附录2:摄像机几何基础
10.1 图像几何
10.2 透视摄像机
10.3 透视摄像机模型
10.4 仿射摄像机
10.5 弱透视模型
10.6 摄像机模型实例
10.7 讨论
10.8 参考文献
第11章 附录3:最小二乘分析
11.1 最小二乘标准
11.2 最小二乘曲线拟合
第12章 附录4:主成分分析
12.1 介绍
12.2 数据
12.3 协方差
12.4 协方差矩阵
12.5 数据变换
12.6 逆变换
12.7 特征值问题
12.8 求解特征值问题
12.9 PCA方法小结
12.10 实例
12.11 参考文献
4.如何写图像融合开题报告
【关键词】 图像配准; 多源传感器; 位置约束; 特征提取; 多种特征组合
【摘要】 随着遥感技术迅速发展和新型传感器的不断涌现,人们获取遥感图像数据的能力不断提高。在利用这些多源遥感图像进行数据融合、目标变化检测、目标识别等多源协同处理工作之前,必须进行多源图像配准工作,配准精度的高低直接影响到后续应用效果的好坏。为此,本文主要研究了多源遥感图像间的配准技术,作为协同系统中的关键技术,要求配准方法在运算能力和配准精度方面都能够达到较好的效果。首先,本文对现有的多源图像配准技术进行原理上的分析与介绍。通过对多种配准方法的分类与比较,指出了遥感图像配准的通用技术环节与技术要点。并在研究过程中分析关键技术环节的难点与所面临问题。其次,本文针对传统多源配准方法在进行控制点对应时运算量大,误配情况多的现状,提出了一种基于位置约束的多源遥感影像配准技术。该方法首先利用人工粗略选取少量控制点对,得到粗略位置映射关系,之后利用位置信息以及分辨率信息建立局部窗函数进行搜索匹配,对两幅图像中提取的Harris角点进行筛选,最终得到的控制点对作为求取配准参数的控制点输入,并利用此方法进行了多组图像的实验来证明方法的通用性。然后,本文针对传统配准方法需要人工参与,并且仅使用单一特征进行匹配效。更多果差的缺点,提出了一种基于多特征组合的多源遥感图像自动配准技术。这种方法利用了由粗至精的配准思想,结合使用点、线、面特征分别进行粗配准及精细配准两个过程。重点解决了其中少量初始控制点对的匹配和更多控制点对的获取。完成了存在闭合区域的多源遥感图像间的自动配准过程,并实验验证了方法的配准精度。最后,为了对配准后的遥感图像进行直观的视觉评价,本文介绍了配准后图像间的镶嵌以及融合等简单应用。通过实验,可以很直观的看出配准的效果,完成配准的定性评价。
5.图像特征提取代码
颜色特征提取
sourceimg =img2double(img); %将图像img转换成double数据类型
rmatix = sourceimg( :, : ,1); %分别提取图像的r,g,b分量
gmatix = sourceimg( :, : , 2);
bmatix =sourceimg( :, :, 3);
2.形状特征
grayimg = rgb2gray( sourceimg ); %将rgb图像转换成灰度图像
hx = [-1 0 1;
-2 0 2;
-1 0 1;] %x方向3*3窗口滤波因子,不记得是哪个模板了
hy = hx'; %转置,Y方向滤波因子,
hxx = [1 0 -2 0 1;
4 0 -8 0 4;
6 0 -12 0 6;
4 0 -8 0 4;
1 0 -2 0 1;] %x方向5*5窗口滤波因子
hyy = hxx'; %转置,Y方向滤波因子
dx = imfilter(grayimg, hx); %滤波进行时。
dy = imfilter(grayimg, hy);
dxx = imfilter(grayimg, hxx);
dyy =imfilter(grayimg, hyy);
3.图像信息检索
r = rsshape( rmatix, m*n, 1); %rsshape是你自己写的程序吗?还是写错了(reshape)
g = rsshape( gmatix, m*n, 1); %reshape是修改图像的大小
b = rsshape( bmatix, m*n, 1);
dx1 = rsshape( dx, m*n, 1);
dy1 = rsshape( dy, m*n, 1);
dxx1 = rsshape( dxx, m*n, 1);
dyy1 = rsshape( dyy, m*n, 1);
Feature = [r, g, b, dx1, dy1, dxx1,dyy1]; %横向合并矩阵
Feature = double(Feature); %将Feature改成double型
M1= cov(Feature); %求Feature的协方差矩阵
6.如何写图像融合开题报告
【关键词】 图像配准; 多源传感器; 位置约束; 特征提取; 多种特征组合
【摘要】 随着遥感技术迅速发展和新型传感器的不断涌现,人们获取遥感图像数据的能力不断提高。在利用这些多源遥感图像进行数据融合、目标变化检测、目标识别等多源协同处理工作之前,必须进行多源图像配准工作,配准精度的高低直接影响到后续应用效果的好坏。为此,本文主要研究了多源遥感图像间的配准技术,作为协同系统中的关键技术,要求配准方法在运算能力和配准精度方面都能够达到较好的效果。首先,本文对现有的多源图像配准技术进行原理上的分析与介绍。通过对多种配准方法的分类与比较,指出了遥感图像配准的通用技术环节与技术要点。并在研究过程中分析关键技术环节的难点与所面临问题。其次,本文针对传统多源配准方法在进行控制点对应时运算量大,误配情况多的现状,提出了一种基于位置约束的多源遥感影像配准技术。该方法首先利用人工粗略选取少量控制点对,得到粗略位置映射关系,之后利用位置信息以及分辨率信息建立局部窗函数进行搜索匹配,对两幅图像中提取的Harris角点进行筛选,最终得到的控制点对作为求取配准参数的控制点输入,并利用此方法进行了多组图像的实验来证明方法的通用性。然后,本文针对传统配准方法需要人工参与,并且仅使用单一特征进行匹配效。更多果差的缺点,提出了一种基于多特征组合的多源遥感图像自动配准技术。这种方法利用了由粗至精的配准思想,结合使用点、线、面特征分别进行粗配准及精细配准两个过程。重点解决了其中少量初始控制点对的匹配和更多控制点对的获取。完成了存在闭合区域的多源遥感图像间的自动配准过程,并实验验证了方法的配准精度。最后,为了对配准后的遥感图像进行直观的视觉评价,本文介绍了配准后图像间的镶嵌以及融合等简单应用。通过实验,可以很直观的看出配准的效果,完成配准的定性评价。
7.图像边缘检测算法的研究与实现 的开题报告
摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处理硬件平台,DSP/BIOS为实时操作系统,利用CCS开发环境来构建应用程序;并通过摄像头提取视频序列,实现对边缘检测Sobel算子改进[1]。
关键词 DM642;Sobel算子;程序优化;图像边缘检测 1 引言 边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地方。
经典的边缘检测算法是利用边缘处的一阶导数取极值、二阶导数在阶梯状边缘处呈零交叉或在屋顶状边缘处取极值的微分算法。图像边缘检测一直是图像处理中的热点和难点。
近年来,随着数学和人工智能技术的发展,各种类型的边缘检测算法不断涌现,如神经网络、遗传算法、数学形态学等理论运用到图像的边缘检测中。但由于边缘检测存在着检测精度、边缘定位精度和抗噪声等方面的矛盾及对于不同的算法边缘检测结果的精度却没有统一的衡量标准,所以至今都还不能取得令人满意的效果。
另外随着网络和多媒体技术的发展,图像库逐渐变得非常庞大;而又由于实时图像的目标和背景间的变化都不尽相同,如何实现实时图像边缘的精确定位和提取成为人们必须面对的问题。随着DSP芯片处理技术的发展,尤其是在图像处理方面的提高如TMS320C6000系列,为实现高效的、实时的边缘检测提供了可能性[5]。
在经典的边缘检测算法中,Sobel边缘检测算法因其计算量小、实现简单、处理速度快,并且所得的边缘光滑、连续等优点而得到广泛的应用。本文针对Sobel算法的性能,并借助于TMS320DM642处理芯片[3],对该边缘检测算法进行了改进和对程序的优化,满足实时性需求。
2 Sobel边缘检测算法的改进 经典的Sobel图像边缘检测算法,是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个是检测垂直边缘,一个是检测水平边缘。算法的基本原理:由于图像边缘附近的亮度变化较大,所以可以把那些在邻域内,灰度变化超过某个适当阈值TH的像素点当作边缘点。
Sobel算法的优点是计算简单,速度快。但由于只采用了两个方向模板,只能检测水平方向和垂直方向的边缘,因此,这种算法对于纹理较复杂的图像,其边缘检测效果欠佳;同时,经典Sobel算法认为,凡灰度新值大于或等于阈值的像素点都是边缘点。
这种判定依据是欠合理的,会造成边缘点的误判,因为多噪声点的灰度新值也很大。2.1 图像加权中值滤波 由于图像中的边缘和噪声在频域中均表现为高频成分,所以在边缘检测之前有必要先对图像进行一次滤波处理,减少噪声对边缘检测的影响。
中值滤波是一种非线性信号的处理方法[2],在图像处理中,常用来保护边缘信息;保证滤波的效果。加权中值滤波,首先对每个窗口进行排序,取适当的比例,进行曲线拟合,拟合后的曲线斜率表征了此窗口的图像特征,再根据图像各部分特性适当的选择权重进行加权。
2.2 增加方向模板 除了水平和垂直两方向外,图像的边缘还有其它的方向,如135o和45o等,为了增加算子在某一像素点检测边缘的精度,可将方向模板由2个增加为8个即再在经典的方向模板的基础上增加6个方向模板,如图1所示。2.3 边缘的定位及噪声的去除 通常物体的边缘是连续而光滑的,且边缘具有方向和幅度两个特征,而噪声是随机的。
沿任一边缘点走向总能找到另一个边缘点,且这两个边缘点之间的灰度差和方向差相近。而噪声却不同,在一般情况下,沿任一噪声点很难找到与其灰度值和方差相似的噪声点[4]。
基于这一思想,可以将噪声点和边缘点区分开来。对于一幅数字图像f(x,y),利用上述的8个方向模板Sobel算子对图像中的每个像素计算,取得其中的最大值作为该点的新值,而该最大值对应的模板所表示的方向为该像素点的方向。
若|f(x,y)-f(x+i,y+j)|>TH2,对于任意i=0,1,-1;j=0,1,-1均成立,则可判断点(x,y)为噪声点。图2给出了图像边缘检测系统改进算法的软件流程图。
图1 边缘检测8个方向模板图2 系统结构图3 基于TMS320DM642的图像处理的设计及算法优化3.1 TMS320DM642功能模块及图像处理系统的硬件结构 DSP以高速数字信号处理为目标进行芯片设计,采用改进的哈佛结构(程序总线和数据总线分开)、内部具有硬件乘法器、应用流水线技术、具有良好的并行性和专门用于数字信号处理的指令及超长指令字结构(VLIW)等特点;能完成运算量大的实时数字图像处理工作。 TMS320DM642是TI公式最近推出的功能比较强大的TMS320C6x系列之一,是目前定点DSP领域里性能较高的一款[6]。
其主频是600MHz,8个并行运算单元、专用硬件逻辑、片内存储器和片内外设电路等硬件,处理能力可达4800MIPS。DM642基于C64x内核,并在其基础上增加了很多外围设备和接口,因而在实际工程中的应用更为广泛和简便。
本系统使用50 MHz晶体震荡器作为DSP的外部时钟输入,经过内部锁相。
转载请注明出处众文网 » 毕业论文开题报告图像特征提取