1.阈值分割的概述
图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域不具有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。
基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。
常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。
设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:
若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。
2.基于阈值的图像分割方法有哪些
主要是三类1) 基于点的全局阈值方法;2) 基于区域的全局阈值方法3) 局部阈值方法和多阈值方法1)基于点的全局阈值方法p-分位数法1962年Doyle提出的p-分位数法是最古老的一种阈值选取方法迭代方法选取阈值初始阈值选取为图像的平均灰度T0,然后用T0将图像的象素点分作两部分,计算两部分各自的平均灰度,小于T0的部分为TA,大于T0的部分为TB,将T1 作为新的全局阈值代替T0,重复以上过程,如此迭代,直至TK 收敛直方图凹面分析法最大类间方差法熵方法最小误差阈值矩量保持法模糊集方法2) 基于区域的全局阈值方法二维熵阈值分割方法简单统计法直方图变化法松弛法3) 局部阈值方法和多阈值方法局部阈值(动态阈值)阈值插值法水线阈值算法多阈值法 基于小波的多域值方法 基于边界点的递归多域值方法 均衡对比度递归多域值方法。
3.基于阈值的图像分割方法有哪些
去百度文库,查看完整内容>
内容来自用户:天使小白很黑
第1章相关知识
1.1图像分割的概述
在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景>;,他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。
所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准。
阈值法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。已被应用于很多的领域,例如,在红外技术应用中,红外无损检测中红外热图像的分割,红外成像跟踪系统中目
4.阈值分割的应用
阈值分割的优点是计算简单、运算效率较高、速度快。在重视运算效率的应用场合(如用于硬件实现),它得到了广泛应用。目前,图像的阈值分割已被应用于很多的领域,例如,在红外技术应用中,红外无损检测中红外热图像的分割,红外成像跟踪系统中目标的分割;在遥感应用中,合成孔径雷达图像中目标的分割等;在医学应用中,血液细胞图像的分割,磁共振图像的分割;在农业工程应用中,水果品质无损检测过程中水果图像与背景的分割。在工业生产应用中,机器视觉运用于产品质量检测等。
5.图像分割中分水岭算法的流程是什么
分水岭算法的概念及原理
分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。分水岭的概念和形成可以通过模拟浸入过程来说明。在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭。
分水岭的计算过程是一个迭代标注过程。分水岭比较经典的计算方法是L. Vincent提出的。在该算法中,分水岭计算分两个步骤,一个是排序过程,一个是淹没过程。首先对每个像素的灰度级进行从低到高排序,然后在从低到高实现淹没过程中,对每一个局部极小值在h阶高度的影响域采用先进先出(FIFO)结构进行判断及标注。
分水岭变换得到的是输入图像的集水盆图像,集水盆之间的边界点,即为分水岭。显然,分水岭表示的是输入图像极大值点。因此,为得到图像的边缘信息,通常把梯度图像作为输入图像,即
g(x,y)=grad(f(x,y))={[f(x,y)-f(x-1,y)]2[f(x,y)-f(x,y-1)]2}0.5
式中,f(x,y)表示原始图像,grad{.}表示梯度运算。
分水岭算法对微弱边缘具有良好的响应,图像中的噪声、物体表面细微的灰度变化,都会产生过度分割的现象。但同时应当看出,分水岭算法对微弱边缘具有良好的响应,是得到封闭连续边缘的保证的。另外,分水岭算法所得到的封闭的集水盆,为分析图像的区域特征提供了可能。
为消除分水岭算法产生的过度分割,通常可以采用两种处理方法,一是利用先验知识去除无关边缘信息。二是修改梯度函数使得集水盆只响应想要探测的目标。
为降低分水岭算法产生的过度分割,通常要对梯度函数进行修改,一个简单的方法是对梯度图像进行阈值处理,以消除灰度的微小变化产生的过度分割。即
g(x,y)=max(grad(f(x,y)),gθ)
式中,gθ表示阈值。
程序可采用方法:用阈值限制梯度图像以达到消除灰度值的微小变化产生的过度分割,获得适量的区域,再对这些区域的边缘点的灰度级进行从低到高排序,然后在从低到高实现淹没的过程,梯度图像用Sobel算子计算获得。对梯度图像进行阈值处理时,选取合适的阈值对最终分割的图像有很大影响,因此阈值的选取是图像分割效果好坏的一个关键。缺点:实际图像中可能含有微弱的边缘,灰度变化的数值差别不是特别明显,选取阈值过大可能会消去这些微弱边缘。
6.matlab彩色图像的阈值分割
阈值分割就是针对灰度图像的,通过设定一个阈值可以在分割后达到二值化的效果。
对彩色图像进行阈值分割,当然也是转成灰度图后进行分割了。 假如你对各个颜色分量分别进行阈值化,我给你试了试 a=imread('a.jpg'); [m,n,d]=size(a); threshold=90; for i=1:m for j=1:n for k=1:3 if a(i,j,k)>90 a(i,j,k)=255; else a(i,j,k)=0; end end end end a_origin=a; a(:,:,2)=0; a(:,:,3)=0; subplot(121),imshow(a); subplot(122),imshow(a_origin); 效果就是,单个颜色分量的可以阈值分割,但是一起分割就效果不理想了 。
7.数字图像处理:阈值分割与边缘检测之间的关系
1 阈值分割是为了突出图像中我们感兴趣的部分的方法,通过二值化(或多值化)zhidao以后目标物体会以特定的灰度值呈现出来,主要侧重在物体本来就已经有灰度特征,使用阈值分割将其表现出来。
边缘检测是为了找出物体边缘的方法,主要侧重的是通过算法体现边缘的灰度特征。2 二值阈值分割的重点在于找二值化的阈值,然回后利用阈值将目标和背景分离。
大多数边缘检测的重点在于确定差分算子,进行邻域内的灰度差分。3 一般的处理过程为先边缘检测得到差分的灰度图,然后使用阈值分割二值化。
4 平时我们说的这两个概念都比较模糊;属于有交集的那种。如果边缘的灰度本来就突出答不需要算法处理就可以直接二值化体现,那阈值分割就可以算是边缘检测的方法了。
如果边缘不突出需要先利用差分算子或其他方法突出边缘,那阈值分割只是体现边缘的手段。
转载请注明出处众文网 » 图像阈值分割毕业论文百度文库