1.空中交通运输专业毕业论文写交通管制可以吗
开始也不知道怎么写,还是莫'文专家,很热心的帮忙搞定了
空中物流对区域社会经济影响效率评价
飞机物流对区域经济的影响分析
基于车路协同系统的交通仿真方法
北京市基础设施投资与经济增长关系研究
我国交通运输政策制定与实施机制研究
我国轨道交通市场多样化融资模式研究
国家开发银行对山西铁路建设项目投融资风险分析及应对研究
Nd和Ca对AZ63镁合金微观组织和力学性能的影响
单点及干线信号控制方案仿真研究
碳关税对中美贸易的影响研究
消费、欲望与社会生活1920年代《广州民国日报》广告研究
湿热山区高速公路红砂岩路基修筑技术研究
伸缩臂式履带起重机支腿滑块接触分析
锦州港口物流产业集群发展对策研究
我国城市软件产业评估体系研究
环氧树脂与胺类固化剂当量比对固化物性能的影响
基于声发射技术的地铁列车滚动轴承故障诊断
安太堡露天矿土地利用变化和土地复垦技术分析
内蒙古生态公路建设的政策创新研究
高铁客运枢纽换乘问题的研究
马六甲海峡断航对我国产业部门的经济影响分析
车载GPS动态导航算法及其应用研究
乡镇用电动三轮车创新研究与设计
山东省CO_2净排放时空差异及低碳路径探索
面向智能交通系统的物联网体系结构的研究与设计
镁合金构件缺陷超声自动检测信号处理技术
高速扩张背景下我国航空公司风险管理研究
服务覆盖网基于SUE的带宽提供问题
供应链环境下的企业生产调度问题
2.空中交通管制
概况
在浩瀚无垠的天空,飞机似乎可以不受约束地随意飞行。其实不然。如同车辆在地面行驶必须遵守交通规则,要接受警察和红绿灯的指挥一样,飞机在天上飞行也要遵守交通规则,也要受到专门机构的指挥与调度,这就是空中交通管制(Air Traffic Control)。
利用通信、导航技术和监控手段对飞机飞行活动进行监视和控制,保证飞行安全和有秩序飞行。
适应飞行安全需求和航空运输发展、解决空间飞机大增需要,也称航空管理和空中管制。
在飞行航线的空域划分不同的管理空域,包括航路、飞行情报管理区、进近管理区、塔台管理区、等待空域管理区等,并按管理区不同使用不同的雷达设备。
在管理空域内进行间隔划分,飞机间的水平和垂直方向间隔构成空中交通管理的基础。
由导航设备、雷达系统、二次雷达、通信设备、地面控制中心组成空中交通管理系统,完成监视、识别、导引覆盖区域内的飞机。
为了保证飞行安全,每个国家都有严格的空中交通管理法规,健全的管制机构和相应的设备和设施。除了保障空中交通安全以外,空中交通管制部门还担负着协调各部门对空域的使用、为国土防空系统提供空口目标识别情报、预报外来航空器入侵和本国飞机擅自飞入禁区或非法飞越国界等多项任务。
保证一切飞机的飞行活动随时受地面指挥调度的管理,严格按计划(高度和航线)飞行;
有效利用空间,保证空中交通有秩序进行;
保证准确与安全的导航勤务,防止飞机在空中相撞或与地面障碍物相撞;
提供有助于保障飞行安全的有效信息和情报,识别进入航管区域飞机的有关数据和代号,以便采取必要措施;
必要时提供有关迷航、遇险飞机的情报
空中交通管制可分为:一般空中交通管制,适用于整个国土上空;特别空中交通管制,适合于边境地区、通过国界的空中走廊和某些特殊地区上空;临时空中交通管制,适合于演习、飞行检阅和航天器发射场区上空;地方空中交通管制,适合于某些地方航线和经过该地区航线的管制。为了维持飞行秩序,保证飞行安全,空中交通管制部门要划定航线、规定各类飞机在空中相撞或与地面障碍物(如山头、高层建筑物等)相撞等事故发生。飞机从起飞到降落,一直处在空中交通管制之下,严格按预定时间、航线、高度、速度飞行,受机场空域管制中心、沿途航路管制中心和终点机场空域管制中心的指挥与调度。
空中交通管制是一项复杂的系统工程。要完成好此任务应具备如下条件:
①有一套完善的、适合本国国情和符合国际民航组织标准的航空法规、程序和方法;
②要明确划分空域,规定管制和非管制空域,有一套完善的航路、航线网;
③要有健全的管理体制和管理机构;
④要有一套现代化的空中交通管制设备,包括通信设备(地空/空地通信和卫星通信),近程、远程和进场着陆导航设备,覆盖整个空域的雷达监视设备,这些设备都由计算机联网,实施高度自动化的控制和管理;
⑤要有一支训练有素的空中交通管制人员,以保证空管的高质量和高效率;
⑥要建立空中交通管制科研机构,不断研究和开发新的空中交通管制系统,以适应日益增长的空中交通流量的需要。
空中交通管制就是防止航空器相撞,防止航空器与地面障碍物相撞,维持空中的交通秩序,保证有一个快速高效的空中交通流量.执行这项任务的人就是空中交通管制员(ATC,AirTrafficController)用一句俗话讲,就是“空中交警”.
空中交通管制包含区域管制、进近管制、塔台管制和空中交通报告服务四部分。区域管制又包含高空区域管制和中低空区域管制,在有些地区这两项职能由同一部门承担。在空中交通流量较小的地区,进近管制和塔台管制是合二为一的。
(一)空管体制。就全国来说,实行"统一管制、分别指挥"的体制。即在国务院、中央军委空中交通管制委员会的领导下,由空军负责实施全国的飞行管制,军用飞机由空军和海军航空兵实施指挥,民用飞行和外航飞行由民航实施指挥。由于这一体制存在某种局限性,目前正在着手改革。就民航内部来说,空管系统实行"分级管理 "的体制,即各级空管部门分别隶属于民航总局、地区管理局、省(市、区)局以及航站。总局空管局对民航空管系统实行业务领导,其余工作包括人事、财务、行政管理及基本建设等均由各地区管理局、省(市、区)局以及航站负责。
3.空中交通管制系统的空中交通管制系统
主要有两类:执行塔台和进近管制的终端区管制系统,执行区域和高空管制的区域管制系统或区域管制中心。
① 终端区管制系统:通常包括由一次雷达、二次雷达构成的数据获取分系统、由电子计算机构成的数据处理分系统、由雷达综合显示器和高亮度显示器构成的显示分系统、以及由图像数据传输、内部通信、对空指挥通信构成的通信分系统等,执行塔台和进近两级管制任务。这个系统的主要功能是:对装有应答机的飞机进行自动跟踪;进行代码呼号相关;显示飞行航迹和有关数据;用人工输入或直接接收邻近管制中心的飞行计划;对输入的计划进行简单处理;进行低高度数据。
美国的自动雷达终端系统ARTS-Ⅱ和ARTS-Ⅲ是典型的终端区管制系统。前者用于中小型机场,后者用于大型机场(图1)。
② 区域管制系统:执行区域管制任务,有时也担负高空管制。它通常包括:由多部远程一次雷达与二次雷达以及由雷达与飞行计划数据传输设备构成的数据获取和传输分系统;由多部计算机构成的飞行计划和雷达数据处理分系统;由雷达综合显示器、飞行数据显示器和飞行单打印机等组成的显示和数据终端分系统;由内部通信、对外直通电话和对空指挥通信组成的通信分系统。
区域管制系统的主要功能是:自动接收、处理多部雷达数据和飞行计划信息;跟踪监视飞机、预测碰撞并提供可选择的调配方案;实行区域管制和区域间的自动管制交接;显示各种有关飞行的数据(包括气象数据);自动打印飞行进程单和同相邻中心交换飞行数据。美国的国家空域管制系统 (NAS)和法国的自动化综合空中交通雷达管制系统(图2)都属于典型的区域管制系统。
空域结构与管制过程 空域是指地球上空可供飞行的广大空间,实际能利用的只是其中极小的一部分。在人口众多的城市之间,大都划有空中航路。
最为繁忙的地区是终端区和机场。飞机是从停机点转到二维平面上起飞,又转入三维空间飞行;相反的过程就是从飞行转到停机。
终端区和机场是飞行活动的集散处。 空中航路和航路网都是以国际标准导航系统,如伏尔导航系统、地美依导航系统、伏尔-地美依导航系统或伏尔塔克导航系统等作为地面基准规划而成的。
航路分为低、高两层,低层从海拔200米起至5500米,适应低性能飞机飞行的需要;高层从 5500米至14000米,适应高性能飞机按仪表飞行规则飞行。在 5500米至30000米间飞行的飞机,必须装设合格的通信、导航、雷达信标应答器等设备。
在 14000米以上,可依地面导航台直飞,而不限于规定的航路。终端区是以机场为中心、以约10公里的半径范围向上延伸成圆形空域。
海洋空域是国际空域,范围在海岸线83-185km以内,最远不超过185km,从海平面以上600~1500米起向上延伸。大陆上空还可根据需要划分为禁飞空域、限制空域和飞行训练空域等。
保持空中飞行间隔是保障飞行安全的重要方法。由于飞机飞行速度差别很大,一般规定,在无雷达监视的情况下纵向间隔应在20~40公里之内。
地面沿途如用雷达监视,纵向间隔可减到5~10公里,垂直间隔须保持300米。横向间隔指对面交错或平行飞行,在5500米高度以下须保持15公里,在雷达监视时可减到6公里。
在海洋上空,纵向间隔与横向间隔可放宽到170~220公里。在规定航道上飞行,除无线电导航设备保障飞行准确外,控制和监视飞行间隔是空中交通管制系统的主要职责。
为此,空中交通管制系统大都采用控制放飞时间,以及飞机在规定地点和时间向地面报告位置等方法。如采用雷达监视,可连续监控间隔。
飞机自备的防撞装置尚处于研究之中。空中交通管制主要分为起飞、航途和到达终端区着陆三个阶段(图3)。
在到达终端区着陆阶段常遇到堵塞情况。为此,到达的飞机须雷达显示器在规定空域分层排队降落。
仪表着陆系统或其他助降设备是完成这种作用的关键设备(图4)。现代微波着陆系统已经研制成功。
多架飞机到达终端着陆,一般是按照先到先降的原则。当飞行业务达到饱和时,航行管制系统可实行流量控制。
空中交通管制电子系统 空中交通管制电子系统包括通信、导航、监视、目标获取和处理,以及显示等设备。通信是最根本的航行管制手段。
传统方式是空中与地面之间用无线电话,地面之间用有线电话或无线电话。数字通信适应现代繁忙的飞行业务需要。
雷达数据遥传也属于通信范围。 雷达是空中交通管制系统中非常重要的手段。
雷达回波包含有丰富的信息,在航路上,一般使用航路监视雷达,覆盖范围可达370公里(半径),监视高度可达18公里,但低空覆盖范围较差。航路雷达使用L频段或S频段。
在终端区和机场上一般使用 S频段雷达,其作用距离只要求 111公里。终端区雷达也可用来指引飞机进入跑道延长线上空。
二次雷达即雷达信标,从地面向飞机发送数雷达信标字通信询问信号,飞机向地面应答(图5)。询问与应答信号均采用编码方式,应答中含有飞机识别信息和高度数据。
雷达信标可以单独工作,但常与航路雷达和机场雷达配合工作。雷达捕获目标所得数据,经过处理才成为有用的信息。
因此,电子计算机是航管系统中的重要组成部分。雷达数据显示利用平面位。
4.空中交通管制的原理
适应飞行安全需求和航空运输发展、解决空间飞机大增需要,也称航空管理和空中管制。空中交通管制的概述为:
1、利用通信、导航技术和监控等专业手段对飞机飞行活动进行监视、控制与指挥,从而保证飞机飞行安全和与使飞机按照一定线路秩序飞行。
2、在飞行航线的空域划分为不同的管理空域,包括航路、飞行情报管理区、进近管理区、塔台管理区、等待空域管理区等,并按管理区的范围与情况选择使用不同的雷达设备对飞机进行管制。
3、在管理空域内进行间隔划分,飞机间的水平和垂直方向间隔构成空中交通管理的基础。
4、由导航设备、雷达系统、二次雷达、通信设备、地面控制中心组成空中交通管理系统,完成监视、识别、引导覆盖区域内的飞机,保证其正常安全的飞行。
5.航空工程机务维修毕业论文怎么写
航班运行调度是指调度飞机与安排机组人员的生产资源配置工作,以落实航班计划的具体实施。
航班运行调度工作一直存在安全与成本的矛盾:首先必须考虑航班运行安全因素,使执行航班飞行任务的飞机能够按规定完成例行检修,且机组人员值勤的飞行时间、值勤时间以及休息时间严格满足有关规章条例要求;在确保运行安全基础上,需要考虑航班运行成本因素,优化航班运行过程中的飞机日利用率与机组资源利用效率。妥善解决这一对矛盾对于航空公司组织生产运营、完成生产计划,以及实现飞机与机组人员等关键资源的优化配置有着至关重要的意义。
为此,本文在详细深入分析国内外研究现状和我国航空公司运行特点基础上,结合民航当局有关航班运行管理规章,重点研究航班运行调度过程中的飞机排班问题和机组排班问题。出于降低问题复杂性、提高航班运行调度计划编排效率以及便于局部调整计划考虑,本文将机组排班问题分解成勤务组编排和机组轮班两个子问题分别进行研究。
关于飞机排班问题,建立协同多任务分配方法,为每一架飞机指派每天的航班飞行任务和必要的例行检修任务,在确保航班运行安全基础上,提高飞机日利用率。首先,分析例行检修约束,构建飞机日利用率优化模型。
随后,运用分枝定价算法求解。算法引入检修节点、虚拟飞机源节点以及剩余飞行时间的定义,将协同多任务分配过程表示为分区间的生成飞机路径,通过迭代求解由部分飞机路径构成的限制主问题,以及寻找飞机路径以改进目标值的定价问题,获得线性松弛问题的最优解;给出多种分枝方法划分解空间,以删除分数解,生成飞机排班计划。
最后以实际航班计划为例,验证所提出的模型与算法的有效性。关于勤务组编排问题,考虑机组配置多样性,提出协同多任务分配方法,为每一个航段分配合适的机组配置,并严格遵循相应人员配置的机组需满足的编排约束,将航段组织为机组资源利用效率较高的勤务组。
首先,根据不同人员配置的机组需满足的休息要求,为每一种机组配置构建相应的连接网络,通过由不同连接网络生成飞行路径实现协同多任务分配。其次,建立满足值勤期限制和飞行时间限制、优化机组资源利用效率的数学模型,使用分枝定价算法求解。
并基于遵循时间限制因机组配置不同而各异但有序的特点,提出机组配置修正算子,以提高算法寻优效率。最后,选择与飞机排班问题相同的算例,验证所给的模型和算法的有效性。
关于机组轮班问题,研究机组稳定性最优的轮班计划,将勤务组衔接为机组人员搭配相对固定的轮班任务,以提高机组人员满意度。首先,在分析机组轮班规则基础上,为每一个机型、基地以及机组人员岗位职级构建相应的连接网络,建立以执行勤务组计划所需机组人员数量最少为优化目标的数学模型,采用分枝定价算法求解。
随后,给出机组稳定性的定义及其量化方法,针对不同岗位职级分别建立满足轮班任务数量约束,并优化机组稳定性的数学模型,设计启发式迭代算法,编排尽量减少机组人员构成发生变化的机组轮班计划。最后,根据勤务组编排问题的求解结果进行算例验证分析。
本文通过以上三大部分的研究,给出了飞机排班、勤务组编排和机组轮班的调度模型和求解算法,实现了航班运行调度计划编排。 [1] 吴东华,夏洪山. 基于多目标模糊线性规划求解方法的飞机排班问题研究[J]. 计算机科学. 2012(01)[2] 赵正佳. 航空公司机组排班计划研究[J]. 运筹与管理. 2011(06)[3] 朱星辉,朱金福,高强. 基于约束编程的飞机排班问题研究[J]. 交通运输系统工程与信息. 2011(06)[4] 牟德一,王志新,夏群. 基于机组延误概率的鲁棒性机组配对问题[J]. 系统管理学报. 2011(02)[5] 孙宏,张培文,胡海青,廖仲宇. 航空公司机组飞行实力利用率影响因素分析[J]. 交通运输工程与信息学报. 2010(02)[6] 李耀华,谭娜. 飞机指派问题优化模型及算法研究[J]. 控制工程. 2010(02)[7] 王莹,刘军,苗建瑞. 基于列生成算法的动车组检修计划优化[J]. 中国铁道科学. 2010(02)[8] 徐海荣,张兴媛,胡盛斌. 差值排序算法在飞机排班问题中的应用[J]. 计算机应用与软件. 2010(01)[9] 宋静波. 基于单亲遗传算法的飞行机组指派技术[J]. 哈尔滨商业大学学报(自然科学版). 2009(03)[10] 李远,彭辉,沈林成. 协同任务规划中基于约束满足的资源冲突检测与消解[J]. 系统工程与电子技术. 2009(04)。
6.描述空中交通管制系统及其运行,指出其功能
空中交通管制管制系统:
主要有两类:执行塔台和进近管制的终端区管制系统,执行区域和高空管制的区域管制系统或区域管制中心。
① 终端区管制系统:通常包括由一次雷达、二次雷达构成的数据获取分系统、由电子计算机构成的数据处理分系统、由雷达综合显示器和高亮度显示器构成的显示分系统、以及由图像数据传输、内部通信、对空指挥通信构成的通信分系统等,执行塔台和进近两级管制任务。这个系统的主要功能是:对装有应答机的飞机进行自动跟踪;进行代码呼号相关;显示飞行航迹和有关数据;用人工输入或直接接收邻近管制中心的飞行计划;对输入的计划进行简单处理;进行低高度数据。美国的自动雷达终端系统ARTS-Ⅱ和ARTS-Ⅲ是典型的终端区管制系统。前者用于中小型机场,后者用于大型机场(图1)。
② 区域管制系统:执行区域管制任务,有时也担负高空管制。它通常包括:由多部远程一次雷达与二次雷达以及由雷达与飞行计划数据传输设备构成的数据获取和传输分系统;由多部计算机构成的飞行计划和雷达数据处理分系统;由雷达综合显示器、飞行数据显示器和飞行单打印机等组成的显示和数据终端分系统;由内部通信、对外直通电话和对空指挥通信组成的通信分系统。区域管制系统的主要功能是:自动接收、处理多部雷达数据和飞行计划信息;跟踪监视飞机、预测碰撞并提供可选择的调配方案;实行区域管制和区域间的自动管制交接;显示各种有关飞行的数据(包括气象数据);自动打印飞行进程单和同相邻中心交换飞行数据。美国的国家空域管制系统 (NAS)和法国的自动化综合空中交通雷达管制系统(图2)都属于典型的区域管制系统。
空域结构与管制过程 空域是指地球上空可供飞行的广大空间,实际能利用的只是其中极小的一部分。在人口众多的城市之间,大都划有空中航路。最为繁忙的地区是终端区和机场。飞机是从停机点转到二维平面上起飞,又转入三维空间飞行;相反的过程就是从飞行转到停机。终端区和机场是飞行活动的集散处。
转载请注明出处众文网 » 航空电子设备维修毕业论文关于空中交通管制