1.关于高中三角函数的论文有哪些素材可写
早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、阿拉伯数学中都有三角学的内容,但那大都是天文观测的副产品.例如,古希腊门纳劳斯著的《球面学》,提出了三角学的基础问题和基本概念.50年后,另一个古希腊学者托勒密著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多也表述出古代印度的三角学思想;其后的瓦拉哈米希拉最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯.
雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表.
最先使用三角学一词的是德国数学家皮蒂斯楚斯,他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形和测量两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的.
16世纪三角函数表的制作首推奥地利数学家雷蒂库斯.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表.
2.三角函数作用作文800字
三角函数是数学中常见的一类关于角度的函数。也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级限或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
3.求2000字三角函数的应用开题报告
开题报告
三角学的起源与发展
三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (测量),其原义为三角形测量(解法),以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。早期的三角学是天文学的一部份,后来研究范围逐渐扩大,变成以三角函数为主要对象的学科。现在,三角学的研究范围已不仅限于三角形,且为数理分析之基础,研究实用科学所必需之工具 一、课题提出的背景
高中学习的紧张,高中学科的繁多。在数学学科上三角函数始终是高中学生们的一个心结,一个想得高分却无法做对的心结。并且三角函数与平面向量中的数学思想方法贯穿于整个学习过程内容中,是解决三角函数与平面向量问题的指南.由于数学学习是具体性较差、与现实有一定距离的活动,自我一时的作用更加突出,更加需要有学习活动与对活动的自我反省和调节间的协调统一。然而,目前数学教学中并没有意识到这个重要性,轻视基本概念教学,迷恋大运动量解题训练,以获得正确答案为满足,不对解题过程进行反思,不总结解题经验和教训,更不对问题进行引申、一般化和概括数学思想方法,结果是导致数学学习的“高投入,低产出,”师生双方的负担都非常重
二、所要解决的主要问题
1、通过实际问题培养学生经历概念的形成能力。
2、研究如何培养学生数形结合的数学思想和整体代换的思想。 3、研究如何培养学生对题分析和解决能力。
4、培养学生良好的解决问题的数学思想和方法,使学生对解题充满信心。
三、课题的理论价值和实践意义
理论价值:本课题的研究有助于学生养成利用数学知识解决现实问题的良好习惯,掌握基本的数学思想和方法,真正体会数学知识的实际意义,培养学生良好的数学意识。
实践意义:本课题的研究体现了数学教学的实际意义和新课程基本要求,提高学生数学学习兴趣,培养数学应用能力。 四、研究内容
1、对学生数学的应用能力进行调查,找出影响应用能力的因素。 2、对学生进行图形语言和数学符号语言相结合练习,培养学生数形结合的思想方法。
3、研究学生解决实际问题过程中学生自主探索,合作交流的能力,寻求多样化的解题方法,培养学生的创新意识。
采纳有好报
4.三角函数图像与性质论文
基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文 摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更能够体现新课程标准精神。
基于网络环境下的数学教学,有助于突破难点,真正实现分层教学和因材施教,从而提高教学效益。基于网络环境下的数学教学应处理好网络与学生的和谐关系,网络与教师的关系,教师与学生的关系。
关键词:教学 数学 网络 新课标传统的教育模式的教学方法、教学手段和教学评价已不能适应社会发展和人们学习的需要,基于网络环境下的学科教学和课堂评价的出现和普及,极大的丰富了教学改革的内容,充分有效的利用了教学资源,基于网络环境下的课堂教学与评价把文本、图像、图形、视频、音频、动画整合在一起,并通过互联网进行处理、控制传播、为学生提供了最理想的学习环境。 一、基于网络环境下的数学教学的含义 基于网络环境下的数学课堂教学,根据新课程标准的教学内容和教学目标需要,继承传统教学的合理成分,打破传统教学模式,全天候,不间断,因材施教的新型教学方法,教学与评价的信息在互联网上传输与反馈,极大的优化了教师群体,极大的丰富了学生的知识能力。
基于网络环境下的教学,可以共享教学资源,传递多媒体信息,适时反馈学生学习情况,刺激学生不同的感官,符合学生的学习认知规律,提高学生的学习兴趣,扩大了信息接受量,增大了课堂教学容量,同时又具有实时性,交互性,直观性的特点大大丰富了课堂教学模式,同时又满足了分层教学,因材施教,远程教学等社会需要,开创了教学的全新局面。 二、基于网络环境下数学教学与评价的应用 基于网络环境下数学教学与评价有两大优点: 1、能做到图文并茂,再现迅速,情境创设,感染力强,能突破时空限制,特别是基于.Net技术的交互式动态网页更能提高学生的多种感官的感知效能,发挥个体的最大潜能和创造力,加快学生对知识的理解、接受和记忆,也最能体现新课标的精神,也极大的满足社会全民教育,终身教育的要求。
2、同时全体老师又能通过网络共享教学资源,适时创新资源,使每一位老师都成为名师,使教学的方法水平永不落后。如在讲授函数这部分内容时,二次函数,幂函数,指数函数,对数函数,三角函数的图像以及图像变换是重点内容,关于函数图像的传统画法,是通过师生列表,描点,连线而得,这些工作烦,静止孤立,间断的点和线。
教师要自制每一节的课件难度大,时间又有限,而基于网络环境下的数学教学,就可以充分利用网络版课件,进行网上学习,从而化静为动,化繁为简,减轻教师的体力负担,使教师有更多的时间进行创新研究,同时让学生在交互的动态的网络环境下学习,函数值随自变量变化而同步变化以及对应运动的轨迹,从而得到完整精确的函数图像,通过交互学习让学生充分体会同一函数不同参数与图像特征之间的联系,充分掌握函数的性质和抓住图像的平移、反射、压缩、拉伸和对称变换特征。若有疑问或好的见解,还可以通过网络进行远程的交流互动。
通过多媒体,交互反馈,使学生深刻理解,不易遗忘。也培养了学生自我学习和终身学习的能力。
网络环境下的数学教学,教师教得轻松,也有更多的时间进行个别指导,学生学得愉快。学得有趣,这样数学教学的效率也提高了。
二、基于网络环境下数学教学突破教学难点 高中数学中有一些知识需要通过抽象思维来解决问题,而这也正是高中数学的难点之一,基于网络环境下的教学可以化抽象为直观,有利于突破难点。 如“二次函数即:y=ax2+bx+c(a≠0)在[m,n]上的最值的探讨,学生对二次函数的开口,对称轴移而区间不动或图像不动而区间变化时函数的最值”不易理解,在网络环境下,学生通过对网络课件的阅读和对a,b,c,m,n的动态控制,能深刻理解数学知识的要点,加上在网上的即时测试和评价,更能有效的掌握它,不再感到难以理解。
三、基于网络环境下的数学教学与评价形式多样化,即时化。 传统的教学形式是教师讲,学生听,这样教学方式课堂容量有限,反馈方式单调,信息交流少,所有的学生步伐相同不利于因材施教,不利于培养学生现代的终身的学习能力,同时不能解放教师,让教师从事更有意义的教育工作。
而网络环境下的教学可以同时满足不同用户不同要求,培养活学活用的能力,真正实现教学以学生为中心,教学面向全体通过互联交流互联互动进行分层教学、个别教学实现因材施教,体现新课标的要求, 四、基于网络环境下数学教学应处理好的关系 (1)网络与学生的关系 和谐是教学成功的关键。实践中发现基于网络环境下的学科教学,应加强对互联网海量信息的搜索,筛选,加工,创新。
在选好教育资源后,教师要努力探索适时、适用问题,创设学习情境,营造和谐的环境。加上学生对网络应用知识基本掌握,达到网络与人的和谐统一。
(2)网络与教师的关系 基于网络环境下的学科教学优势空前,实践中发现,只有网络环境下的教学与教师灵活生动的讲解和创新的适时评价互相配合,相互促进,协调传递信息,最大限度地发挥网。
5.三角函数题型分析与研究论文可以从哪些方面来写
我可以帮你写的。
按研究问题的大小不同可以把毕业论文分为宏观论文和微观论文。凡届国家全局性、带有普遍性并对局部工作有一定指导意义的论文,称为宏观论文。它研究的面比较宽广,具有较大范围的影响。反之,研究局部性、具体问题的论文,是微观论文。它对具体工作有指导意义,影响的面窄一些。
另外还有一种综合型的分类方法,即把毕业论文分为专题型、论辩型、综述型和综合型四大类:
1.专题型论文。这是分析前人研究成果的基础上,以直接论述的形式发表见解,从正面提出某学科中某一学术问题的一种论文。如本书第十二章例文中的《浅析领导者突出工作重点的方法与艺术》一文,从正面论述了突出重点的工作方法的意义、方法和原则,它表明了作者对突出工作重点方法的肯定和理解。
2.论辩型论文。这是针对他人在某学科中某一学术问题的见解,凭借充分的论据,着重揭露其不足或错误之处,通过论辩形式来发表见解的一种论文。如《家庭联产承包责任制改变了农村集体所有制性质吗?》一文,是针对“家庭联产承包责任制改变了农村集体所有制性质”的观点,进行了有理有据的驳斥和分析,以论辩的形式阐发了“家庭联产承包责任制并没有改变农村集体所有制”的观点。另外,针对几种不同意见或社会普遍流行的错误看法,以正面理由加以辩驳的论文,也属于论辩型论文。
3.综述型论文。这是在归纳、总结前人或今人对某学科中某一学术问题已有研究成果的基础上,加以介绍或评论,从而发表自己见解的一种论文。
4.综合型论文。这是一种将综述型和论辩型两种形式有机结合起来写成的一种论文。如《关于中国民族关系史上的几个问题》一文既介绍了研究民族关系史的现状,又提出了几个值得研究的问题。因此,它是一篇综合型的论文。
6.三角函数图像与性质论文
基于网络环境下《三角函数的图像和性质》课堂教学的探讨数学论文 摘 要:互联网的出现,教育模式将有革命性的变化,基于网络环境下的教学已成为当今教学改革的核心,也更能够体现新课程标准精神。
基于网络环境下的数学教学,有助于突破难点,真正实现分层教学和因材施教,从而提高教学效益。基于网络环境下的数学教学应处理好网络与学生的和谐关系,网络与教师的关系,教师与学生的关系。
关键词:教学 数学 网络 新课标传统的教育模式的教学方法、教学手段和教学评价已不能适应社会发展和人们学习的需要,基于网络环境下的学科教学和课堂评价的出现和普及,极大的丰富了教学改革的内容,充分有效的利用了教学资源,基于网络环境下的课堂教学与评价把文本、图像、图形、视频、音频、动画整合在一起,并通过互联网进行处理、控制传播、为学生提供了最理想的学习环境。 一、基于网络环境下的数学教学的含义 基于网络环境下的数学课堂教学,根据新课程标准的教学内容和教学目标需要,继承传统教学的合理成分,打破传统教学模式,全天候,不间断,因材施教的新型教学方法,教学与评价的信息在互联网上传输与反馈,极大的优化了教师群体,极大的丰富了学生的知识能力。
基于网络环境下的教学,可以共享教学资源,传递多媒体信息,适时反馈学生学习情况,刺激学生不同的感官,符合学生的学习认知规律,提高学生的学习兴趣,扩大了信息接受量,增大了课堂教学容量,同时又具有实时性,交互性,直观性的特点大大丰富了课堂教学模式,同时又满足了分层教学,因材施教,远程教学等社会需要,开创了教学的全新局面。 二、基于网络环境下数学教学与评价的应用 基于网络环境下数学教学与评价有两大优点: 1、能做到图文并茂,再现迅速,情境创设,感染力强,能突破时空限制,特别是基于.Net技术的交互式动态网页更能提高学生的多种感官的感知效能,发挥个体的最大潜能和创造力,加快学生对知识的理解、接受和记忆,也最能体现新课标的精神,也极大的满足社会全民教育,终身教育的要求。
2、同时全体老师又能通过网络共享教学资源,适时创新资源,使每一位老师都成为名师,使教学的方法水平永不落后。如在讲授函数这部分内容时,二次函数,幂函数,指数函数,对数函数,三角函数的图像以及图像变换是重点内容,关于函数图像的传统画法,是通过师生列表,描点,连线而得,这些工作烦,静止孤立,间断的点和线。
教师要自制每一节的课件难度大,时间又有限,而基于网络环境下的数学教学,就可以充分利用网络版课件,进行网上学习,从而化静为动,化繁为简,减轻教师的体力负担,使教师有更多的时间进行创新研究,同时让学生在交互的动态的网络环境下学习,函数值随自变量变化而同步变化以及对应运动的轨迹,从而得到完整精确的函数图像,通过交互学习让学生充分体会同一函数不同参数与图像特征之间的联系,充分掌握函数的性质和抓住图像的平移、反射、压缩、拉伸和对称变换特征。若有疑问或好的见解,还可以通过网络进行远程的交流互动。
通过多媒体,交互反馈,使学生深刻理解,不易遗忘。也培养了学生自我学习和终身学习的能力。
网络环境下的数学教学,教师教得轻松,也有更多的时间进行个别指导,学生学得愉快。学得有趣,这样数学教学的效率也提高了。
二、基于网络环境下数学教学突破教学难点 高中数学中有一些知识需要通过抽象思维来解决问题,而这也正是高中数学的难点之一,基于网络环境下的教学可以化抽象为直观,有利于突破难点。 如“二次函数即:y=ax2+bx+c(a≠0)在[m,n]上的最值的探讨,学生对二次函数的开口,对称轴移而区间不动或图像不动而区间变化时函数的最值”不易理解,在网络环境下,学生通过对网络课件的阅读和对a,b,c,m,n的动态控制,能深刻理解数学知识的要点,加上在网上的即时测试和评价,更能有效的掌握它,不再感到难以理解。
三、基于网络环境下的数学教学与评价形式多样化,即时化。 传统的教学形式是教师讲,学生听,这样教学方式课堂容量有限,反馈方式单调,信息交流少,所有的学生步伐相同不利于因材施教,不利于培养学生现代的终身的学习能力,同时不能解放教师,让教师从事更有意义的教育工作。
而网络环境下的教学可以同时满足不同用户不同要求,培养活学活用的能力,真正实现教学以学生为中心,教学面向全体通过互联交流互联互动进行分层教学、个别教学实现因材施教,体现新课标的要求, 四、基于网络环境下数学教学应处理好的关系 (1)网络与学生的关系 和谐是教学成功的关键。实践中发现基于网络环境下的学科教学,应加强对互联网海量信息的搜索,筛选,加工,创新。
在选好教育资源后,教师要努力探索适时、适用问题,创设学习情境,营造和谐的环境。加上学生对网络应用知识基本掌握,达到网络与人的和谐统一。
(2)网络与教师的关系 基于网络环境下的学科教学优势空前,实践中发现,只有网络环境下的教学与教师灵活生动的讲解和创新的适时评价互相配合,相互促进,协调传递信息,最大限度地发。
7.反三角函数论文怎么写啊
一.基础知识自测题: 1.sin(arccosx)=; tg(arcsinx)=; sin(arctgx)=. 2.sin(arcsin)=; arccos(cos)=; arcsin(cos)=. 3.tg{arcsin[cos(arcctg(-))]}=. 4.cos[arctg+arccos(-)]=. 5.sin[arctg(-)]=; cos(2arcsin)+cos(2arccos)=. 6.arcsin[sin(-5)]+arctg(tg10)= 5-π . 7.sin(2arctg)+tg(arcsin)=. 8.cos{arcsin(sinx)+arccos[cos(x-)]}= 0 . 二.基本要求: 1.对反三角函数施以三角运算,实质是求三角函数值,通常是利用反三角函数的意义,用辅助角表示反三角函数,同时给定角的范围,然后化成三角函数的运算。
而对于反三角函数的多层运算,一般由内到外逐层化简; 2.求反三角函数的值的实质是求角,应注意求角的三个步骤:①讨论角的范围,确定在这个范围内不同的角有不同的三角函数值;② 求这个角的一个三角函数值;③ 求出相应的角; 3.反三角函数的等式证明,一般必须证明两点:①等式两端的角的同名三角函数值相等;② 等式两端的角在所取的三角函数的同一单调区间内; 例一.已知函数f (x)=arcsin(sinx), g(x)=cos(2arccosx),求证:f (x)是奇函数,g(x)是偶函数。 证明:函数f (x)的定义域是R,f (-x)=arcsin[sin(-x)]=arcsin(-sinx)=-f (x), ∴f (x)是奇函数; 函数g(x)的定义域是[-1, 1], g(-x)=cos[2arccos(-x)]=cos[2(π-arccosx)]=cos(2arccosx)=f (x). ∴ g(x)是偶函数。
例二.求函数y=arccos(x2-x)的单调递增区间。 解:由-1≤x2-x≤1, 解得≤x≤, 设u=x2-x=(x-)2-, 则当x∈[, ]时, u单调递减,且u∈[-1, 1]时,y=arccosu单调递减, ∴当x∈[, ]时, y=f (x)单调递增。
例三.计算:(1) tg(arcsin+arccos); (2) sin(arcctg). 解:(1) tg(arcsin+arccos)=tg(+)=. (2) sin(arcctg)=sin(·)==. 例四.求值:(1) tg[2arcsin(-)-arccos]; (2) sin(2arctg)+cos(2arctg2). 解:(1) arcsin(-)=-,设arccos=β,则cosβ=,β∈(0, ), sinβ=,tg=, ∴原式=tg(--)=-tg(+)=-=-(8+5). (2) 设arctg=α,arctg2=β, α,β∈(0, ), 且tgα=, tgβ=2, 因此sin(2arctg)=sin2α==, cos(2arctg2)=cos2β==-, ∴原式=-=-. 例五.求值:(1) arcsin[sin(-)]; (2)arccos(cos); (3) arcsin[cos(+α)]+arccos[sin(π+α)], 其中0<α<. 解:(1) sin(-)=-sin=sin, ∴arcsin[sin(-)]=arcsin(sin)=. (2) arccos(cos)=arccos[cos(π+)]=arccoscos=. (3) ∵0<α<, ∴ cos(+α)=-sinα=sin(-α), sin(π+α)=cos(+α), ∴原式=arcsin[sin(-α)]+arccos[cos(+α)]=-α++α=. 例六.求证:sin{arccos[tg(arcsinx)]}=. 证明:设arcsinx=α, α∈[-, ], sinα=x, cosα=, tgα=, ∴ arccos[tg(arcsinx)]=arccos, 设arccos=β, β∈[0, π], cosβ=, sinβ==, ∴ sin{arccos[tg(arcsinx)]}=. 例七.求值:(1) tg[arcsin(-)]; (2) arcsin-arctg. 解:(1)设arcsin(-)=α, α∈(-, 0), 且sinα=-, ∴ cosα=, tg[arcsin(-)]=tg==-. (2) 设arcsin=α,α∈(0, ),且sinα=, cosα=, arctg=β, β∈(0, ), 且tgβ=, sinβ=, cosβ=, 又α-β∈(-, ), ∴ sin(α-β)=sinαcosβ-cosαsinβ=, ∴α-β=, 即arcsin-arctg=. 例八.已知arcsin0, x1x2= cos<0, 故正根的绝对值大于负根的绝对值, ∴α+β∈(0, ), ∴α+β=. 例十.若(x+1)(y+1)=2,求arctgx+arctgy的值。 解:∵ (x+1)(y+1)=2, ∴xy+x+y+1=2, ∴ x+y=1-xy, 设arctgx=α, arctgy=β, 则tgα=x, tgβ=y, ∴ tg(α+β)= ==1, 又α,β∈(-, ), ∴ α+β∈(-π, π), α+β=或α+β=-. 三.基本技能训练题: 1.当 x>0 时, arctgx=arcctg, 当 x<0 时, arctgx= arcctg-π. 2.比较大小:arccos(-) > arcctg(-). 3.sin(arccos+arccos)=. 4.已知cos2α=,α∈(0, ), sinβ=-,β∈(π, ), 则α+β=. 四.试题精选: (一) 选择题: 1.若arcsin(sinx)=x,则x的取值范围是(B)。
(A)-1≤x≤1 (B)-≤x≤ (C)0≤x≤1 (D)0≤x≤ 2.2arcsin=(D)。 (A)arcsin (B)arccos (C)-arccos (D)π-arctg 3.若arctg(-3)+arcctgx=,则x的值是(B)。
(A) (B)- (C)2 (D)-2 4.下列各式中,其值为正的是(B)。 (A)aecsin(-)-arccos(-) (B)arccos(-)-arccos(-) (C)arctg-arctg (D)arctg(-3)-arctg(-1.7) 5.cos2(arcsin)的值是(A)。
(A) (B) (C) (D) 6.若arcsin(-)=-arccosx,则x等于(C)。 (A) (B)- (C) (D)- 7.若arctg(1-x)+arctg(1+x)=,则x等于(C)。
(A) (B)- (C)± (D)±1 8.当x∈[-1, 0]时, 下列关系式中正确的是(C)。 (A)π-arccos(-x)=arcsin (B)π-arcsin(-x)=arccos (C)π-arccosx=arcsin (D)π-arcsinx=arccos 9.函数y=arccos(cosx) (x∈[-, ])的图象是(A)。
(A) (B) (C) (D) 10.若0<α<,则arcsin[cos(+α)]+arccos[sin(π+α)]等于(A)。 (A) (B)- (C)-2α (D)--2α (二) 填空题: 11.cos[arccos(-)+arccos]= -1 . 12.arccos[sin(-)]=. 13.arcsin+2arctg=. 14.sin[2arccos(-)]=. 15.arctg()=. (三) 解答题: 16.求arcsin+arccos的值。
解:设α=arcsin, α∈(0, ), sinα=, cosα=, β= arccos, β∈(0, ), cosβ=, sinβ=, ∴ α+β∈(0, π), cos(α+β)=cosαcosβ-sinαsinβ=, ∴ arcsin+arccos=. 17.求tg(arcsin)的值。 解:设arcsin=α, α∈(0, ), sinα=, cosα=, ∴ tg==. tg(arcsin)=. 18.求函数y=cos(2arcsinx)+2sin(arcsinx)的最值。
解。
8.三角函数求值中常见的几种策略 论文
三角函数求值中常见的几种策略 论文
根据我搜集的一些网站来看,建议看看这个,要做毕业论文以及毕业设计的,推荐一个网站 ,里面的毕业设计什么的全是优秀的,因为精挑细选的,网上很少有,都是相当不错的毕业论文和毕业设计,对毕业论文的写作有很大的参考价值,希望对你有所帮助。
别的相关范文很多的,推荐一些比较好的范文写作网站,希望对你有帮助,这些精选的范文网站,里面有大量的范文,也有各种文章写作方法,注意事项,应该有适合你的,自己动手找一下,可不要照搬啊,参考一下,用自己的语言写出来那才是自己的。
如果你不是校园网的话,请在下面的网站找:
毕业论文网: 分类很细 栏目很多
毕业论文:
毕业设计:
开题报告:
实习论文:
写作指导: