1.大学数学论文
如何写数学论文:选题与写作方法
引言
在审阅数学论文过程中发现很多论文内容简单,或是一两个习题证明或是将教材内容,他人论文组合改编,简单重复,更有甚者直接抄袭。很多从事数学教育工作人士认为数学教育论文难写,事实上他们还没有掌握撰写数学论文的规律。
数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。
1 撰写数学论文应具有原则
1.1 创新性
作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。
1.2 科学性
科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。
1.3 规范性
规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。
2 撰写数学论文忌讳
2.1 大题小作
论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。
2.2 关门写稿
一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。
2.3 形式思维混乱
科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。
3 关于数学论文选题
数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:
(1)需要性 选题应从社会需要和科学发展的需要出发。
(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。
(3)科学性 选题应有最基本的科学事实作依据。
(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。
4 关于数学论文文风
4.1 语言表达确切
从选词,造句,段落,篇章,标点符号都应正确无误。
4.2 语言表达清晰简洁
语句通顺,脉络清楚,行文流畅,语言简洁。
4.3 语言朴实
语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。
2.大学数学论文怎么写,给篇范文
一定要有题目,作者名字,通讯地址,邮编,摘要关键词,正文,参考文献,最好还要有英文的Keyword与 Abstract ,范文随便上网找,结尾要有参考文献。
关于条件极值的探讨(图片打不上,呵呵)俊聪 (应用数学学院,应用数学专业,08级)摘要 本文主要类比了无条件极值的判别法,讨论了条件极值是否拥有与无条件极值类似的判别法。通过利用黑赛矩阵与二阶微分,得出了怎样求条件极值和极值点的有效方法,并且得出了无条件极值所满足的判别法不是都适应条件极值的。
关键词 条件极植一熟悉的条件极值判别法在研究数学问题时,有时会遇到与极值有关的问题,而我们常见的有无条件极值与条件极值。对于无条件极值,我们都有非常熟悉的判别法:若二元函数f在点的某个邻域U()内具有二阶连续偏导数,且是f的稳定点,则有:(1) 当>0,>0时,黑赛矩阵是正定的,f在点取得极小值;(2) 当<0, >0时,黑赛矩阵是负定的,f在点取得极大值;(3) 当<0时,黑赛矩阵是不定的,f在点不能取得极值;(4) 当=0时,黑赛矩阵是半定的,不能肯定f在点是否取得极值。
因此,我们可以类比无条件极值,探讨条件极值,看它是否也满足上面的四条判别法。二 有关条件极值的一个定理为了研究上面的问题,我们首先给出一个常用定理:首先,这个定理需要条件:在的限制下,要求目标函数的极值。
则有定理:设在满足上面的限制下,求函数的极值问题,其中与在区域D内有连续的一阶的偏导数。若D的内点是上述问题的极值点,且雅可比矩阵的秩为m,则存在m个常数,使得为拉格朗日函数的稳定点,即为下述n+m个方程的解。
三 分析讨论以上问题通过引入上面的定理,我们可以得到它的稳定点,而我们接下来考虑的是条件极值能否在稳定点处取得极值,且如果取得极值,它取得的是极大值还是极小值。我们在这里还需用到黑赛矩阵。
设是F的稳定点。令,并且使固定,考虑在点的黑赛矩阵此时,分类讨论:1当是正定的或负定的。
这是是的极值点。而我们限制了。
因此也是的相应的条件极值点。2当是不定的或半正定的或半负定的。
这是可能不是的极值点,但也有可能是的极值点。我们可以通过,。
求出,,…,,,…,之间的关系,得到,…,的二次型如果此时其系数矩阵是正定的,则是的极小值点;如果是负定的,则是的极大值点。通过以上分析,我们就可以得出一个重要的结论:条件极值类比与无条件极值第一,二条是成立的,对于第四条是不适应的,对于第三条虽然开始也无法判断,但可以找到其他途径,求出是否有极值。
四 实例分析我们首先举出一个例子:已知f(x,y,z)=x+y+z,求它在限制条件xyz=下的极值点。解:根据题意,我们首先设F(x,y,z,)=f(x,y,z)+ (xyz-)接着,我们算dF(x,y,z,)=0,从而解得x=y=z=c, =如果c=0,则可得f(x,y,z)在xyz=下无极值点当c0时,则在=,=(c,c,c)处,有=此时此矩阵不是正定的,也不是负定的。
再对xyz-=0求微分,在=(c,c,c)处,解得dz=-dx-dy,代入得=(dxdy+dydz+dzdx)=(——dxdy—)=当c>0时,正定,(c,c,c)为极小值点,当c<0, 负定,(c,c,c)为极大值点。因此,通过这个例子,我们在不能判断黑赛矩阵是正定还是负定的情况下,可以通过适当的转化使极值点求出来。
其实,我们也可以通过其他类似的方法来求有关条件极值的有关问题。例如,我们可以用二阶微分的方法来求条件极值。
对于二阶微分,有公式:我们通过举个例子来加以说明。已知f=xyz,求它在限制条件下的极值。
解:令F(x,y,z,)= xyz+ ()求dF=0,则=yz+2x=0 =xz+2y=0 =xy+2z=0 =0则可以解得八个稳定点当=—时,有稳定点(1,1,1),(1,—1,—1), (—1,—1,1), (—1,1,—1)当 =时,有稳定点 (1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)则dF=(yz+2x)dx+(xz+2y)dy+(xy+2z)dz=我们首先来判断点 (1,1,1)是否为极值点,求出稳定点 的微分dz=—dx—dy,且(,)=—+=——+2(dx+dy)dz,把dz=—dx—dy带进去,得(,)=———2<0,则可得(1,1,1)是极大值点,同理可得(1,—1,—1), (—1,—1,1), (—1,1,—1)是极大值点,而(1,1,—1),(—1,—1.—1),(—1,1,1), (1,—1,1)都是极小值点,进而我们可求出此时极大值点所对应的极值都为1,极小值点所对应的极值都为—1,从而得解。[参考文献][1] 华东师范大学数学系 数学分析下册 第三版[M]高等教育出版社 2001[2]孙振绮 丁效华 工科数学分析例题与习题下册[M]机械工业出版社 2008。
3.数学论文怎么写呢
要看你写论文的目的啊。
如果是像一般本科毕业论文之类的。
也要看你自己的要求。如果是想得优秀。
那应该要有自己新的出彩的东西。
如果只是为了拿良好或者及格。那没关系。
基本上随便写写。或者到以前现成的文献上各处搬点过来也可以了。
如果是要发表啥的。
那总要有点出彩的地方才行把这里可以给你看下我本科学校(温州大学)数学学院论文要求毕业论文的注意事项(2008年11月20日)一、毕业论文的意义1、经受科学研究的初步训练,掌握科学研究的基本方法。2、检验学生学习质量的重要手段。
3、本科学生毕业并获得学士学位的必要条件。二、毕业论文的基本要求1、论文任务书(由指导教师填写)教师负责向学生讲解任务书中所规定的论文具体要求和目标,学生必须按任务书的要求进行论文的撰写。
2、开题报告(不少于2000字,由学生撰写)选题的背景和意义,研究的基本内容和拟解决的主要问题,研究的方法及措施,研究工作的步骤与进度,主要参考文献等。通过上述描述可以让指导师作出判断:问题研究的价值和研究方法的可行性、题目的大小是否合适、参考资料是否充足等。
开题报告必须经指导教师签署意见及学院审定后才能生效。3、文献综述(不少于2000字,由学生撰写)由学生通过系统地查阅与所选课题相关的国内外文献,进行搜集、整理、加工,从而撰写的综合性叙述和评价文章。
要全面地反映与本课题直接相关的国内外研究成果和发展趋势,指出该课题所需要进一步解决的问题。文献综述的特点是综合性、描述性、评价性。
它能反映学生的文献阅读能力和综合分析能力。文献包括社会调查与科学实验材料、平时的学习记录或读书笔记、公开发表的论文或出版的著作(主流文献)。
文献中要求至少有两篇外文文献。4、文献翻译翻译的英文文献要求达到10000个字符以上(或翻译成中文后至少在2000汉字以上),翻译的文献应该与所研究的课题有关。
注意:文献翻译的题目应该是被翻译文献或资料的题目,而不是论文的题目。5、论文及其格式整体结构封面目录标题(2号黑体)(空两行)姓名(4号宋体)(班级)(5号宋体)(空一行)摘要:(小5号宋体加黑)摘要内容(小5号宋体)关键词:(小5号宋体加黑)词语(小5号宋体)(空一行)正文(宋体小四号字(英文用新罗马体12),单倍行距,页码用小五号字,文中的一些段落标题,可以用4号宋体或者加黑)(空一行)参考文献(5号宋体加黑)文献标题等(5号宋体)(空一行)英文摘要(New Roman 10号,内容与中文摘要相同)范文1,范文2,,范文3论文摘要:以浓缩形式概括所研究课题的内容,要突出本课题的成果和新见解。
一般不超过300字。关键字:正文主题内容信息的单词、词组或术语。
一般为3--5个。正文:论文的核心部分(不少于8000汉字)。
包括引言、对课题内容和成果的详细表述、深入的分析和周密的论证、结束语、致谢等。可分成若干段落或章节,对各章节或段落要标以小标题或序号。
参考文献:罗列正文中所援引的文献,大多按引用的顺序排列。文献的篇数一般不少于10篇,其中至少有两篇外文文献。
期刊:[序号]作者,题名[J],期刊名称,出版年月,期号书籍:[序号]著者,书名[M],版次,出版社,出版年月,起止页码论文集: [序号]作者,题名[C]。见:编者,文集名,出版者,出版年月,起止页码.三、论文工作程序1、选题(11月20日至12月15日),分三轮进行。
选题网址:/lw经过三轮师生双向选题确定论题和指导师:11月21日至11月30日第一轮选题12月1日至12月10日第二轮选题12月11日至12月15日第三轮选题在每轮选题期间,每位学生至多预选两个论题,并且要及时与相关指导老师联系并商定,防止选题无效。确定题目和指导师后请及时告知学院办公室(龚老师),以免影响其他同学选题。
学生也可自选论题,但应及时与相关教师商讨确定。三论选题后仍没有确定题目的同学将由学院指定。
12月16至12月20日由学院调整汇总并最后确定,论文研讨方向和指导师确定后,不得随意更改和变动。2、任务书和开题报告08年12月下旬由指导教师向学生下达论文任务书,学生接到任务书后,开始搜集查阅文献资料,并在教师的指导下开始撰写开题报告。
09年3月10日前完成开题报告以班级为单位上交学院教学办公室。3、文献综述和文献翻译09年3月31日前完成文献综述和文献翻译以班级为单位上交到学院教学办公室。
4、论文初稿09年4月30日前写出论文初稿,并交给指导教师,经指导师修改后返回给学生。在此前后应随时与指导师保持联系,当面听取指导师的意见,对论文进行2到3次修改。
5、论文正稿09年5月22日前完成论文正稿,用A4纸打印,加封面和目录装订成册,一式三份(一份自留,一份交指导师,一份以班级为单位上交到学院教学办公室)6、纪律约束在整个论文工作期间,学生与指导师必须保持密切联系,至少有6次接受指导师的面授指导。若学生没有按期完成某个阶段的工作,则必须提交书面理由,指导师给出初步意见,由学位。
4.数学与应用数学毕业论文有怎样的格式和要求
毕业论文是学生时代最重要的一件事,事关能否毕业,而毕业论文的格式又决定了一篇论文的水准,所以我们在做毕业论文时,一定要按正确的毕业论文的格式排版。
第一、构成项目 毕业论文包括以下内容: 封面、内容提要与关键词、目录、正文、注释、附录、参考文献。其中“附录”视具体情况安排,其余为必备项目。
如果需要,可以在正文前加“引言”,在参考文献后加“后记”。 第二、各项目含义 (1)封面 封面由文头、论文标题、作者、学校名称、专业、年级、指导教师、日期等项内容组成。
(2)内容提要与关键词 内容提要是论文内容的概括性描述,应忠实于原文,字数控制在300字以内。关键词是从论文标题、内容提要或正文中提取的、能表现论文主题的、具有实质意义的词语,通常不超过7个。
(3)目录 列出论文正文的一二级标题名称及对应页码,附录、参考文献、后记等对应的页码。 (4)正文 正文是论文的主体部分,通常由绪论(引论)、本论、结论三个部分组成。
这三部分在行文上可以不明确标示。 (5).注释 对所创造的名词术语的解释或对引文出处的说明,注释采用脚注形式。
(6)附录 附属于正文,对正文起补充说明作用的信息材料,可以是文字、表格、图形等形式。 (7)参考文献 作者在写作过程中使用过的文章、著作名录。
4、毕业论文格式编排 第一、纸型、页边距及装订线 毕业论文一律用国家标准A4型纸(297mmX210mm)打印。页边距为:天头(上)30mm,地脚(下)25mm,订口(左)30mm,翻口(右)25mm。
装订线在左边,距页边10mm。 第二、版式与用字 文字、图形一律从左至右横写横排,1.5倍行距。
文字一律通栏编辑,使用规范的简化汉字。忌用繁体字、异体字等其他不规范字。
第三、论文各部分的编排式样及字体字号 (1)文头 封面顶部居中,小二号行楷,顶行,居中。固定内容为“成都中医药大学本科毕业论文”。
(2)论文标题 小一号黑体。文头居中,按小一号字体上空一行。
(如果加论文副标题,则要求:小二号黑体,紧挨正标题下居中,文字前加破折号) 论文标题以下的行距为:固定值,40磅。 (3)作者、学院名称、专业、年级、指导教师、日期 项目名称用小三号黑体,后填写的内容处加下划线标明,8个汉字的长度,所填写的内容统一用三号楷体,各占一行,居中对齐。
下空两行。 (4)内容提要及关键词 紧接封面后另起页,版式和字号按正文要求。
其中,“内容提要”和 “:” 黑体,内容用宋体。上空一行,段首空两格,回行顶格:“关键词”与 “内容提要”间隔两行,段首空两格。
“关键词”和 “:” 用黑体,内容用宋体。关键词通常不超过七个,词间空一格。
(5)目录 另起页,项目名称用3号黑体,居中排列,上下各空一行;内容用小4号仿宋。 (6)正文文字:另起页。
(7)论文标题:用二号黑体加粗,居中排列,上空一行;下标明年级、专业、作者,作者姓名另起一行,四号楷体,居中排列;下空两行接正文。正文文字一般用小四号宋体,每段起首空两格,回行顶格,单倍行距。
(8)正文文中标题 一级标题,标题序号为“一、”与正文字号相同,黑体,独占行,末尾不加标点; 二级标题,标题序号为“(二)”,与正文字体字号相同,独占行,末尾不加标点; 三级以下标题序号分别为“1.”和(1),与正文字体字号相同。为避免与注释相互混淆,不可用“①”。
可根据标题的长短确定是否独占行,若独占行,则末尾不使用标点,否则,标题后必须加句号。每级标题的下一级标题应各自连续编号。
(9)注释:正文中加注之处右上角加数码,形式统一为“①”,同时在本页留出适当行数,用横线与正文分开,空两格后定出相应的注号,再写注文。注号以页为单位排序,每个注文各占一段,用小5号宋体。
引用文章时,注文的顺序为:作者、文章标题、刊物名、某年第几期〈例如 : ①龚祥瑞:《论行政合理性原则》, 载《法学杂志》1987年第1期。);引用著作时,注文的顺序为:作者、著作名称、出版者、某年第几版、页数 ( 例如:② [ 英 ] 威廉·韦德著:《行政法》,楚剑译,中国大百科全书出版社 1997年版,第5页。)
(10)附录 项目名称为小四号黑体,在正文后空两行空两格排印,内容编排参考“示范文本”。
(11)参考文献 项目名称用小四号黑体,在正文或附录后空两行顶格排印,另起行空两格用小四号宋体排印参考文献内容,具体编排方式同注释(参考的著作可不写第几页) 。 (12)页码 首页不编页码,从第二页起,居中编排。
5.数学论文怎么写呢
要看你写论文的目的啊。
如果是像一般本科毕业论文之类的。
也要看你自己的要求。如果是想得优秀。
那应该要有自己新的出彩的东西。
如果只是为了拿良好或者及格。那没关系。
基本上随便写写。或者到以前现成的文献上各处搬点过来也可以了。
如果是要发表啥的。
那总要有点出彩的地方才行把这里可以给你看下我本科学校(温州大学)数学学院论文要求毕业论文的注意事项(2008年11月20日)一、毕业论文的意义1、经受科学研究的初步训练,掌握科学研究的基本方法。2、检验学生学习质量的重要手段。
3、本科学生毕业并获得学士学位的必要条件。二、毕业论文的基本要求1、论文任务书(由指导教师填写)教师负责向学生讲解任务书中所规定的论文具体要求和目标,学生必须按任务书的要求进行论文的撰写。
2、开题报告(不少于2000字,由学生撰写)选题的背景和意义,研究的基本内容和拟解决的主要问题,研究的方法及措施,研究工作的步骤与进度,主要参考文献等。通过上述描述可以让指导师作出判断:问题研究的价值和研究方法的可行性、题目的大小是否合适、参考资料是否充足等。
开题报告必须经指导教师签署意见及学院审定后才能生效。3、文献综述(不少于2000字,由学生撰写)由学生通过系统地查阅与所选课题相关的国内外文献,进行搜集、整理、加工,从而撰写的综合性叙述和评价文章。
要全面地反映与本课题直接相关的国内外研究成果和发展趋势,指出该课题所需要进一步解决的问题。文献综述的特点是综合性、描述性、评价性。
它能反映学生的文献阅读能力和综合分析能力。文献包括社会调查与科学实验材料、平时的学习记录或读书笔记、公开发表的论文或出版的著作(主流文献)。
文献中要求至少有两篇外文文献。4、文献翻译翻译的英文文献要求达到10000个字符以上(或翻译成中文后至少在2000汉字以上),翻译的文献应该与所研究的课题有关。
注意:文献翻译的题目应该是被翻译文献或资料的题目,而不是论文的题目。5、论文及其格式整体结构封面目录标题(2号黑体)(空两行)姓名(4号宋体)(班级)(5号宋体)(空一行)摘要:(小5号宋体加黑)摘要内容(小5号宋体)关键词:(小5号宋体加黑)词语(小5号宋体)(空一行)正文(宋体小四号字(英文用新罗马体12),单倍行距,页码用小五号字,文中的一些段落标题,可以用4号宋体或者加黑)(空一行)参考文献(5号宋体加黑)文献标题等(5号宋体)(空一行)英文摘要(New Roman 10号,内容与中文摘要相同)范文1,范文2,,范文3论文摘要:以浓缩形式概括所研究课题的内容,要突出本课题的成果和新见解。
一般不超过300字。关键字:正文主题内容信息的单词、词组或术语。
一般为3--5个。正文:论文的核心部分(不少于8000汉字)。
包括引言、对课题内容和成果的详细表述、深入的分析和周密的论证、结束语、致谢等。可分成若干段落或章节,对各章节或段落要标以小标题或序号。
参考文献:罗列正文中所援引的文献,大多按引用的顺序排列。文献的篇数一般不少于10篇,其中至少有两篇外文文献。
期刊:[序号]作者,题名[J],期刊名称,出版年月,期号书籍:[序号]著者,书名[M],版次,出版社,出版年月,起止页码论文集: [序号]作者,题名[C]。见:编者,文集名,出版者,出版年月,起止页码.三、论文工作程序1、选题(11月20日至12月15日),分三轮进行。
选题网址:/lw经过三轮师生双向选题确定论题和指导师:11月21日至11月30日第一轮选题12月1日至12月10日第二轮选题12月11日至12月15日第三轮选题在每轮选题期间,每位学生至多预选两个论题,并且要及时与相关指导老师联系并商定,防止选题无效。确定题目和指导师后请及时告知学院办公室(龚老师),以免影响其他同学选题。
学生也可自选论题,但应及时与相关教师商讨确定。三论选题后仍没有确定题目的同学将由学院指定。
12月16至12月20日由学院调整汇总并最后确定,论文研讨方向和指导师确定后,不得随意更改和变动。2、任务书和开题报告08年12月下旬由指导教师向学生下达论文任务书,学生接到任务书后,开始搜集查阅文献资料,并在教师的指导下开始撰写开题报告。
09年3月10日前完成开题报告以班级为单位上交学院教学办公室。3、文献综述和文献翻译09年3月31日前完成文献综述和文献翻译以班级为单位上交到学院教学办公室。
4、论文初稿09年4月30日前写出论文初稿,并交给指导教师,经指导师修改后返回给学生。在此前后应随时与指导师保持联系,当面听取指导师的意见,对论文进行2到3次修改。
5、论文正稿09年5月22日前完成论文正稿,用A4纸打印,加封面和目录装订成册,一式三份(一份自留,一份交指导师,一份以班级为单位上交到学院教学办公室)6、纪律约束在整个论文工作期间,学生与指导师必须保持密切联系,至少有6次接受指导师的面授指导。若学生没有按期完成某个阶段的工作,则必须提交书面理由,指导师给出初步意见,由学位委员会决定是否影响其毕业论文的成绩。
填写工。
6.数学论文怎么写
数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。
现结合笔者的教学实际谈谈数学小论文的几种具体写法。 1. 一道数学题的解答。
主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。
学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。 2. 用数学的眼光去分析现实问题。
主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1 300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。
3. 生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。
写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。
4. 课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。
这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。
5. 数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。
比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇心得体会,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。 6. 数学童话。
主要指学生发挥丰富的想象力,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。
三、指导学生写数学小论文应注意的几个问题 1. 注意结合学生的实际水平,做到循序渐进。刚开始写作,起点不要过高,写作内容、形式的选择要考虑学生的实际能力和水平,还要考虑学生是否具备观察、测试、实验的能力和条件。
没有经过实践,没有可靠的材料和数据,是不可能写出有科学价值的文章的。数学小论文的价值与题目的大小没有多大关系,小题目照样可写出大文章来。
初学者最好是一题一议。题目大了费时费力,不容易说清楚,往往写不下去。
题目缩小,论据材料容易收集,也降低了文章的写作难度,有利于学生的参与。 2. 注意结合学生身边的数学实际,做到切实可行。
小学生所学数学知识有限,精力和时间也有限,教师指导学生写数学小论文应注意紧密结合学生的学习和生活实际。教师可以有指导性地帮学生选一些题材,让学生根据自己的亲身体验去写,这样学生易于接受,容易理解,有利于写作。
比如,在学完面积单位和长方形、正方形的面积后,让学生通过亲自动手测量并估算出课桌、教室地面面积大约有多少平方米,并把实践活动的过程写成数学小论文。又如为了教育学生节约粮食,可以让学生调查统计学校食堂每天浪费多少千克粮食,一年下来学校节约的粮食可以派什么用场。
这样学生就会有活动,有思考,有内容可写。 3. 注意培养学生的参与意识,让学生积极主动撰写数学小论文。
教学的主体是学生,只有学生积极参与,将数学小论文变成自觉的行动,这个活动才可能取得预期的效果。开展写作的目的也在于提高学生学习的积极性,变被动学习为主动学习,培养学生的自学能力和创新意识。
由于小学生知识和能力的限制,大多数学生不大可能写出水平很高的小论文。写数学小论文的活动,对学生来说,最大的意义就是参与。
在参与写作活动过程中,学生的能力会得到提高,才能会得到展现。
7.求数学毕业论文30个参考文献
参考
1 邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)
2 黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)
3 胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)
4 竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)
5 杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,1993
1、《计算机教育应用与教育革新——'97全球华人计算机教育应用大会论 文集》李克东 何克抗 主编 北京师范大学出版社 1997
2、《教育中的计算机》 全国中小学计算机教育研究中心(北京部)1998
3、林建详编:《CAI的理论与实践——迎接21世纪的挑战》 全国CBE 学会第六次学术会议论文集 1993 北京 北京大学出版社。
[1] 参见D. A. Drennen, ed., A Modern Introduction to Metaphysics, New York: Free Press of Glencoe, 1962。 此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。
[2] 参见R. G. Collingwood, An Essay on Metaphysics, Oxford: Clarendon Press, 1940。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”
[3] 《形而上学》,982b14-28。
[4] 引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。
[5] 亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。
[6] 参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。
[7] 《古希腊哲学》,78页。
[8] 《毕达哥拉斯和毕达哥拉斯学派》,115页以下。
[9] 同上书,125页。译文稍有改动。
[10] 《希腊哲学史》第1卷,290页。
[11] 亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。
[12] 《毕达哥拉斯与毕达哥拉斯学派》,107页以下。
[13] 巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。 相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板
够不够 我在给你找
8.数学与应用数学本科毕业论文怎么写
数学与应用数学专业毕业论文(设计)大纲
先修课程:数学与应用数学专业主要课程、教育类课程等
适用专业:数学与应用数学(本科、师范)
一、目的
培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。
二、论文选题
论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:
1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;
2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;
3.结合自己所学的专业知识,联系实际解决一些应用问题;
4.对中学有关数学课程的教材、教学方法进行专题研究;
5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;
6.对新课程改革的理论与实践进行探讨。
论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。
三、对毕业论文的基本要求
1.立论、观点要符合马克思主义基本原理;
2.对学术的探讨要符合科学性和逻辑性;
3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;
4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;
5.文字通顺,表达确切,书写规范,独立完成;
6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;
7.论文应包括英文名、英文摘要和英文关键词;
8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。
四、毕业论文成绩评定
1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。
2.成绩分5个等级:优秀、良好、中等、及格、不及格。
毕业生毕业论文统一格式要求
一、论文用纸:B5纸打印。
二、论文标题:
1、主标题:用小二号黑体字,置于首页第一行,居中。
2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。
三、论文正文:
1、字体:用四号仿宋体。
2、段落:行距为24磅。
3、页码:居中。
四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。
五、注释:如有注释,皆在正文之后注明。
9.大学数学论文范文
微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。
微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。
1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。
转载请注明出处众文网 » 大学本科数学毕业论文