1.求一篇制作数字万用表总结2000字
数字万用表 一.概述 DT830型数字万用表是三位半液晶显示小型数字万用表。
它可以测量交、直流电压和交、直流电流,电阻、电容、三极管β值、二极管导通电压和电路短接等,由一个旋转波段开关改变测量的功能和量程,共有30档。 本万用表最大显示值为±1999,可自动显示“0”和极性,过载时显示“1”或“-1”,电池电压过低时,显示“←”标志,短路检查用蜂鸣器。
二.技术特性 1.测量范围 ⑴交、直流电压(交流频率为45Hz~500Hz);量程分别为200mV、2V、20V和1000五档,直流精度为±(读数的0.8%+2个字)以下,交流精度为±(读数的1%+5个字);输入阻抗,直流档为10MΩ,交流档为10MΩ、100PF。 ⑵交、直流电流 量程分别为200μA、2mA、200mA和10A五档,直流精度为±(读数的1.2%+2个字),交流精度为±(读数的2.0%+5个字),最大电压负荷为250mV(交流有效值)。
⑶电阻: 量程分别为:200Ω、2kΩ、200kΩ、20MΩ和20MΩ六档。精度为±(读数的2.0%+3个字)。
⑷二极管导通电压: 量程为0~1.5V,测试电流为1mA±0.5 mA。 ⑸三极管β值检测: 测试条件为:VCE=2.8V,IB=10μA。
⑹短路检测: 测试电路电阻 2.采样时间:T S=0.4S。 三.面板及操作说明 1. 显示器 三位半数字液晶显示屏 2. 电源开关 按下,则接通电源,不用时应随手关断。
3. 电容测量插座 测量电容时,将电容引脚插入插座中。 4. 功能量程开关 选择不同的测量功能和量程。
5. 10A电流插孔(不能测量大于10A电流) 当测量大于200mA、小于10A的交、直流电流时,红表笔应插入此10A电流插孔。 6. 电流插孔 当测量小于200mA的交、直流电流时,红表笔应插入此电流插孔。
7. V/Ω插孔 当测量交、直流电压、电阻、二极管导通电压和短路检测时,红表笔应插入此V/Ω插孔。 8. 接地公共端“COM”插孔黑表笔始终插入此接地插孔中。
9. β值测试插座 将被测三极管的集电极、基极和发射极分别插入“C”、“B”、“E”插孔内,注意区分三极管是NPN型还是PNP型。 四.使用方法 1. 准备 按下电源开关,观察液晶显示是否正常,有否电池缺电标志出现 ,若有则要先更换电池。
2. 使用 (1) 交、直流电流的测量根据测量电流的大小选择适当的电流测量量程和红表笔的插入孔,测量直流时,红表笔接触电压高一端,黑表笔接触电压低的一端,正向电流从红表笔流入万用表,再从黑表笔流出,当要测量的电流大小不清楚的时候,先用最大的量程来测量,然后再逐渐减小量程来精确测量。 (2) 交、直流电压的测量 红表笔插入“V/Ω”插孔中,根据电压的大小选择适当的电压测量量程,黑表笔接触电路“地”端,红表笔接触电路中待测点。
特别要注意,数字万用表测量交流电压的频率很低(45~500Hz),中高频率信号的电压幅度应采用交流毫伏表来测量。 (3) 电阻的测量 红表笔插入“V/Ω”插孔中,根据电阻的大小选择适当的电阻测量量程,红、黑两表笔分别接触电阻两端,观察读数即可。
特别是,测量在路电阻时(在电路板上的电阻),应先把电路的电源关断,以免引起读数抖动。禁止用电阻档测量电流或电压(特别是交流220V电压),否则容易损坏万用表。
另外,利用电阻档还可以定性判断电容的好坏。先将电容两极短路(用一支表笔同时接触两极,使电容放电),然后将万用表的两支表笔分别接触电容的两个极,观察显示的电阻读数。
若一开始时显示的电阻读数很小(相当于短路),然后电容开始充电,显示的电阻读数逐渐增大,最后显示的电阻读数变为“1”(相当于开路),则说明该电容是好的。若按上述步骤操作,显示的电阻读数始终不变,则说明该电容已损坏(开路或短路)。
特别注意的是,测量时要根电容的大小选择合适的电阻量程,例如47μF用200k档,而4.7μF则要用2M档等等。 (4) 二极管导通电压检测 在这一档位,红表笔接万用表内部正电源,黑表笔接万用表内部负电源。
两表笔与二极管的接法如图1所示。若按图1(a)接法测量,则被测二极管正向导通,万用表显示二极管的正向导通电压,单位是mV。
通常好的硅二极管正向导通电压应为500mV~800mV,好的锗二极管正向导通电压应为200mV~300mV。假若显示“000”,则说明二极管击穿短路,假若显示“1”,则说明二极管正向不通。
若按图1(b)接法测量,应显示“1”,说明该二极管反向截止,若显示“000”或其它值,则说明二极管已反向击穿。此档也可以用来判断三极管的好坏以及管脚的识别。
测量时,先将一支表笔接在某一认定的管脚上,另外一支表笔则先后接到其余两个管脚上,如果这样测得两次均导通或均不导通,然后对换两支表笔再测,两次均不导通或均导通,则可以确定该三极管是好的,而且可以确定该认定的管脚就是三极管的基极。若是用红表笔接在基极,黑表笔分别接在另外两极均导通,则说明该三极管是NPN型,反之,则为PNP型。
最后比较两个PN结正向导通电压的大小,读数较大的是be结,读数较小的是bc结,由此集电极和发射极都识别出来了。 (5) 三极管值β测试 首先要确定待测三极管是NPN型还是PNP型,然后将其管脚正确地插入对应类型。
2.求一篇关于“简易数显毫伏表设计”的毕业论文
简易数字电压表的设计
论文编号:JD898 包括开题报告,任务书,外文翻译,论文字数:9215,页数:26
摘 要
在现代检测技术中,常需用高精度数字电压表进行现场检测。本文中的数字电压表控制系统采用AT89C51单片机,A/D转换采用ADC0809,以此实现数字电压表的功能。该系统的数字电压表电路简单,所用的元件较少,成本低,还可以方便地测量0~5V的8路输入电压值,并在四位LED数码管上轮流显示或单路选择显示。
关键词: AT89C51;数字电压表;A/D转换;ADC0809
Abstract
Designing of Simple Digital Voltmeter
In modem measuring technology, the digital voltmeter is often used in site measuring. The control system of digital voltmeter that described in this paper uses AT89c51, and A/D converter uses ADC0809 to perform the design of the digital voltmeter. The voltmeter has simple electrical circuit,few elements and low cost .The meter has the capability of measuring 8 voltage inputs from 0 to 5 volt at one time, and displays the measurements in turn or only displays one route that selected.
Key words: AT89c51;digital voltmeter; A/D conversion;ADC0809
摘 要 I
Abstract II
第1章 绪论 1
1.1 问题的提出及研究背景 1
1.2 国内外研究现状和发展趋势 2
1.3 本设计的要求及所做的工作 3
第2章 系统硬件电路的设计 4
2.1 系统总体设计 4
2.1.1 设计思路 4
2.1.2 元件选择 5
2.2 系统各模块电路的设计 6
2.2.1输入模块 6
2.2.2 A/D转换模块 7
2.2.3 单片机模块 8
2.2.4 LED数码管显示模块 9
2.3系统总电路 9
第3章 系统程序设计 11
3.1 主程序设计 11
3.2 各子程序设计 11
3.2.1 A/D转换子程序 11
3.2.2 数据处理子程序 12
3.2.3 显示子程序 13
第4章 电路的仿真与调试 14
总 结 15
参考文献(References) 16
致 谢 17
附 录 18
附录1: 简易数字电压表电路仿真图 18
附录2: 简易数字电压表电路原理图 19
附录3: 简易数字电压表电路PCB图 20
附录4: 源程序代码 21
以上回答来自:
3.急求 数字万用表安装实践的论文参考文献~~~
提供一些关于数字万用表安装实践的论文的参考文献,供写作参考。
[1] 秦辉,陈东风. HP-36B型数字万用表的原理与维修[J]. 仪表技术, 2006,(04) . [2] 蔡秀明. 指针式万用表的快速修理[J]. 上海计量测试, 2007,(03) . [3] 吕可. 废弃的数字万用表改装激光功率计[J]. 中国科技信息, 2007,(23) . [4] 陈立方. 数字万用表多功能附加器[J]. 电子测量技术, 2003,(03) . [5] 宛杰,何文波. 数字万用表故障检测与排除的实用方法[J]. 大连轻工业学院学报, 2007,(01) . [6] baiyun_feng0230. 送你免费的示波器、数字万用表[J]. 电脑爱好者, 2003,(14) . [7] 吉时利. 2000系列数字万用表[J]. 电子测量技术, 2002,(01) . [8] 沙占友,刘阿芳,王科. 智能数字万用表的电路优化设计[J]. 电源技术应用, 2005,(10) . [9] 王长清. 万用表在质量检测中的应用与分析[J]. 中小企业管理与科技, 2007,(10) . [10]具有台式性能的手持型数字万用表[J]. 电子产品世界, 2003,(24) .。
4.毕业设计论文..有关(简易数字频率计)..
绪论
在电子系统非常广泛应用领域内,到处可见到处理离散信息的数字电路。供消费用的微波炉和电视、先进的工业控制系统、空间通讯系统、交通控制雷达系统、医院急救系统等在设计过程中无一不用到数字技术。数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。
数字集成电路具有结构简单(如其中的晶体管是工作于饱和与截止2种状态,一般不设偏置电流)和同类型电路单元多(如一个计数系统需要很多同类型的触发器和门电路)的特点,因而容易是高集成度和归一化。由于数字集成电路与电子计算机的发展紧密相关,因而发展很快,目前已是集成电路中产量最高、集成度最大的一种器件。
集成电路的类型很多,从大的方面可分为模拟和数字集成电路两大类。虽然它们都可模拟具体的物理过程,但其工作方式有着很大的不同。甚至可能完全不同。电路中的工作信号通常是用电脉冲表示的数字信号。这种工作方式的信号,可以表达2种截然不同的现象。如以有脉冲表示“1”,无脉冲便表示“0”;以“1”表示“真”,则“0”便表示“假”,等等。反之亦然。这就是“数字信号”的含义。所以,“数字量”不是连续变化的量,其大小往往并不改变,但在时间分布上却有着严格的要求,这是数字电路的一个特点。
数字式频率计基于时间或频率的A/D转换原理,并依赖于数字电路技术发展起来的一种新型的数字测量仪器。由于数字电路的飞速发展,所以,数字频率计的发展也很快。通常能对频率和时间两种以上的功能数字化测量仪器,称为数字式频率计(通用计数器或数字式技术器)
在电子测量技术中,频率是一个最基本的参量,对适应晶体振荡器、各种信号发生器、倍频和分频电路的输出信号的频率测量,广播、电视、电讯、微电子技术等现代科学领域,更需要进行频率的测量,这种测量设备在我国已经大量生产,基本上能满足使用者的需要,因而取代了带有刻度盘的谐振式频率计。
5.简易万能表的制作 实验报告 如何写
1,万用表的基本使用方法 万用表的种数码和结构是多种多样的,使用时,只有掌握正确的方法,才能确保测试结果的准确性,才能保证人身与设备的安全! (1)插孔和转换开关的使用 首先要根据测试目的选择插孔或转换开关的位置,由于使用时测量电压,电流和电阻等交替的进行,一定不要忘记换档。
切不可用测量电流或测量电阻的档位去商量电压。如果用直流电流或电阻去测量220的交流电压,万用表则会立马烧坏~ (2)测试表笔的使用 万用表有红,黑笔,别看它就有两根,使用中能不能运用自如,也是大有学问的,如果位置接反,接错,将会带来测测试错误或烧坏表头的可能性。
一般红表笔为“+”,黑笔为“-”。 表笔插放万用表插孔时一定要严格按颜色和正负插入。
测直流电压或直流电流时,一定要注意正负极性~没电流时,表笔与电路串联,测电压时,表笔与电路并联,不能搞错~ (3)如何正确读数 万用表使用前应检查指针是否在零七八碎位上,如不指零位,可调正表盖上的机械调节器,调至零位~ 万用表有多条标尺,一定要认清对应的读数标尺,不能图省事面而把交流和直流标尺任意混用,更不能看错~ 万用表同一测量项目有多个量程,例如直流电压量程有1V,10V,15V,25V,100V,500V等,量程选择应使指针满刻度的2/3附近。测电阻时,应将指多云指向该档中心电阴值附近,这样才能使测量准确~ 2,常用器件的测量 (1)电阻的测量 用万用表没量电阻时,首先应该将表笔短接,拧动调零电位器调零,使指针在欧姆零位上。
而且每次换档之后也需重新调整调零电位器调零。在选择欧姆档位时,尽量选择被测阻值在接近表盘中心阻值读数的位置,以提高测试结果的精确度;如果被电阻在电路板上,则应焊开其中一脚方可测试,否则被电阻有其它分流器件,读数不准确!测量阻值电阻时,不要两手手指分别接触表笔与电阻的引脚,以妨人体电阻的分流,增加误差~ (2)对地测量电阻值 所谓对地测量电阻值,即是用万用表红表笔接地,黑表笔接被测量的元件的其中一个点,测量该点在电路对地电阻值,与正常的电阻值进行比较来断定故障的范围。
在测量时,电阻档位设置在R*1k档,当测得的点的电阻值与正常的比较相差较大的情况下,说明该部分电路存在故障,如滤波电空漏电,电阻开路或集成IC损坏等~ (3)晶体管的测量 把万用表的量程转换到欧姆档R*100或R*1K档来测量二极管。不能用R*10,R*10K档。
前为两者一个电阻太小,一个电阻太大,通过二极管的电流太大,易损坏二极管,后者则因为内部电压较高,容易击穿耐压较低的二极管。如果测出的电阻只有几百欧到几千欧(正向电阻),则应把红,黑表笔对换一下再测,如果这时没测出的电阻值应是几百千欧(反向电阻),说明这只二极管可以使用。
当测量正向电阻值时,红表笔所测的那一头是二极管的负极,而黑表笔所测的一头是该二极管的正极~(二极管的单向导电特性)~ 通过测量正反向电阻值,可以检查二极管的好坏,一般要求反向电阻比正向电阻在几百倍。也就是说,正向电阻越小越好,反向电阻则是越大越好~ (4)交流电压的测量 我们可以用万用的直流电压档和交流电压档分别测量旰流和交流电的电压值,则是的时候把万用表与被测电路以并联的形式连接上。
要选择表头指针接近满刻度偏转2/3的量程。如果电路上的电压大小估计不出来,就要先用大的量程,精略测量后再用合适的量程,这样可以防止出于电压过高而损坏万用表。
在没量直流电压时,要把万用表的红表笔触在被测的电路正极,而把黑笔触到电路的负极上,千万不能搞反~在测量 比较高的电压时应该特别注意两只分别握住红,黑表笔的约缘部分去测量,或先将一支表笔固定在一端,而后触及被测试点~ (5)充电变压器的测量量 可以在变压器不通电情况下用万用表的欧姆档初步估计一睛其好与坏。先将万用表选择在R*10档,测量一下变压器初级线圈的直流电阻值,一般在几百欧到几千欧,如果测量出的数值是无穷大,那说明该线圈已经断路,不能使用了! 然后再测试一下初级线圈和次级线圈之间的绝缘电阻值,应是越大越好~如果阻值小说明初次级之间的绝缘不良,也不能使用~以上测量如果都是良好,就可以将变压器接上电源测量其输出电压值,对带有滤波电路的变压器要注意红,黑表笔应该正确地分别放在电压输出端的正负极上,如果被测量出的输出电压正常,说明该变压器的性能良好~ 这方面通常用在手机充电器上~~ 3,注意事项 (1)使用万用表之前,应充分了解各转换开关,专用插口,测量插孔以及相应附件的作用,发解其刻度盘的读数; (2)万用表在使用时一般应水平放置在无干燥,无振动,无强磁场的条件下使用; (3)测量完毕,应将量程选择开关调到最大电压档,防止下次开始测量时不慎烧坏万用表~。
6.简易数字直流电压表的设计
1.转换方式 V-T型间接转换ADC。
2. 电路结构 图11.11.1是这种转换器的原理电路,它由积分器(由集成运放A组成)、过零比较器(C)、时钟脉冲控制门(G)和计数器(FF0~FFn)等几部分组成。图11.11.1 双积分A/D转换器 (1)积分器 积分器是转换器的核心部分,它的输入端所接开关S1由定时信号Qn控制。
当Qn为不同电平时,极性相反的输入电压vI和参考电压 VREF将分别加到积分器的输入端,进行两次方向相反的积分,积分时间常数τ=RC。 (2)过零比较器 过零比较器用来确定积分器的输出电压v0过零的时刻。
当v0≥0时,比较器输出vC为低电平;当v0<0时,vC为高电平。比较器的输出信号接至时钟控制门(G)作为关门和开门信号。
(3)计数器和定时器 它由n+1个接成计数器的触发器FF0~FFn-1串联组成。触发器FF0~FFn-1组成n级计数器,对输入时钟脉冲CP计数,以便把与输入电压平均值成正比的时间间隔转变成数字信号输出。
当计数到2n个时钟脉冲时,FF0~FFn-1均回到0态,而FFn翻转到1态,Qn=1后开关 S1从位置A转接到B。 (4)时钟脉冲控制门 时钟脉冲源标准周期Tc,作为测量时间间隔的标准时间。
当vC=1时,门打开,时钟脉冲通过门加到触发器FF0的输入端。 3.工作原理 双积分ADC的基本原理是对输入模拟电压和参考电压分别进行两次积分,将输入电压平均值变成与之成正比的时间间隔,然后利用时钟脉冲和计数器测出此时间间隔,进而得到相应的数字量输出。
由于该转换电路是对输入电压的平均值进行变换,所以它具有很强的抗工频干扰能力,在数字测量中得到广泛应用。 下面以输入正极性的直流电压vI为例,说明电路将模拟电压转换为数字量的基本原理。
电路工作过程分为以下几个阶段进行,图中 各处的工作波形如图11.11.2所示。 (1) 准备阶段 首先控制电路提供CR信号使计数器清零,同时使开关S2闭合,待积分电容放电完毕后,再使S2断开。
(2) 第一次积分阶段 在转换过程开始时(t=0),开关S1与A端接通,正的输入电压vI加到积分器的输入端。积分器从0V开始对vI积分,其波形如图11.11.2斜线O-VP段所示。
根据积分器的原理可得(其中τ=RC) 由于vO<0,过零比较器输出为高电平,时钟控制门G被打开。于是,计数器在CP作用下从0开始计数。
经2n个时钟脉冲后,触发器FF0~FFn-1 都翻转到0态,而Qn=1,开关S1由A点转接到B点,第一次积分结束,第一次积分时间为t=T1=2nTc 令VI为输入电压在T1时间间隔内的平均值, 则由式 可得第一次积分结束时积分器的输出电压为Vp图11.11.2双积分A/D转换器各处工作波形(3) 第二积分阶段 当t=t1时,S1转接到B点,具有与vI相反极性的基准电压-VREF加到积分器的输入端;积分器开始向相反方向进行第二次积分;当t=t2时,积分器输出电压v0≥0,比较器输出vC=0,时钟脉冲控制门G被关闭,计数停止。在此阶段结束时v0的表达式可写为 设T2=t2-t1,于是有 设在此期间计数器所累计的时钟脉冲个数为λ,则 T2=λTc 可见,T2与V1成正比,T2就是双计分A/D转换过程中的中间变量。
上式表明,在计数器中所得的数λ(λ=Qn-1···Q1Q0),与在取样时间T1内输入电压的平均值VI成正比的。只要VI 由于双积分A/D转换器在时间内采的是输入电压的平均值,因此具有很强的抗工频干扰的能力。
尤其对周期等于T1或几分之一的对称干扰(所谓对称干扰是指整个周期内平均值为零的干扰),从理论上来说,有无穷大的抑制能力。即使当工频干扰幅度大于被测直流信号,使得输入信号正负变化时,仍有良好的抑制能力。
由于在工业系统中经常碰到的是工频(50Hz)或工频的倍频干扰,故通常选定采样时间T1总是等于工频电源周期的倍数,如20ms或40ms等。另一方面,由于在转换过程中,前后两次积分所采用的同一积分器。
因此,在两次积分期间(一般在几十到数百毫秒之间),R、C和脉冲源等元器件参数的变化对转换精度的影响均可忽略。 最后必须指出,在第二积分阶段结束后,控制电路又使开关S2闭合,电容C放电,积分器回零。
电路再次进入准备阶段,等待下一次转换开始。 4.特点 (1)计数脉冲个数λ与RC无关,可以减小由RC积分非线性带来的误差。
(2)对脉冲源CP要求不变,只要在T1+T2时间内稳定即可。 (3)转换精度高。
(4)转换速度慢,不适于高速应用场合。 单片集成双积分式A/D转换器有ADC-EK8B(8位,二进制码)、ADC-EK10B(10位,二进制码)、MC14433(7/2位,BCD码)等。
转载请注明出处众文网 » 简易数字万用表毕业设计论文