1.我要写一篇关于粒子群最优化算法(PSO)的论文,还需要一个关于这
摘自:人工智能论坛 1。
引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。
系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。
而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2。 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统。
人工生命包括两方面的内容 1。 研究如何利用计算技术研究生物现象 2。
研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容。 现在已经有很多源于生物现象的计算技巧。
例如, 人工神经网络是简化的大脑模型。 遗传算法是模拟基因进化过程的。
现在我们讨论另一种生物系统- 社会系统。 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为。
也可称做"群智能"(swarm intelligence)。 这些模拟系统利用局部信息从而可能产生不可预测的群体行为 例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计。
在计算智能(computational intelligence)领域有两种基于群智能的算法。 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。
前者是对蚂蚁群落食物采集过程的模拟。 已经成功运用在很多离散优化问题上。
粒子群优化算法(PSO) 也是起源对简单社会系统的模拟。 最初设想是模拟鸟群觅食的过程。
但后来发现PSO是一种很好的优化工具。 3。
算法介绍 如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。
在这个区域里只有一块食物。所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。 那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。
所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。 然后粒子们就追随当前的最优粒子在解空间中搜索 PSO 初始化为一群随机粒子(随机解)。
然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。
第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest。
另一个极值是整个种群目前找到的最优解。 这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, persent[] 是当前粒子的位置。
pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数。 c1, c2 是学习因子。
通常 c1 = c2 = 2。 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax 4。
遗传算法和 PSO 的比较 大多数演化计算技术都是用同样的过程 1。 种群随机初始化 2。
对种群内的每一个个体计算适应值(fitness value)。适应值与最优解的距离直接有关 3。
种群根据适应值进行复制 4。 如果终止条件满足的话,就停止,否则转步骤2 从以上步骤,我们可以看到PSO和GA有很多共同之处。
两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解 但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation)。
而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。
与遗传算法比较, PSO 的信息共享机制是很不同的。 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。
在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子, 这是单向的信息流动。 整个搜索更新过程是跟随当前最优解的过程。
与遗传。
2.写一篇《论算法设计中的分治与增量》的学术论文1500字1500字 爱问
一、动态规划的基本思想 在比较基本的算法设计思想里,动态规划是比较难于理解,难于抽象的一种,但是却又十分重要。
动态规划的实质是分治思想和解决冗余,因此它与分治法和贪心法类似,它们都是将问题的实例分解为更小的、相似的子问题,但是动态规划又有自己的特点。 贪心法的当前选择可能要依赖于已经作出的选择,但不依赖于还未做出的选择和子问题,因此它的特征是由顶向下,一步一步地做出贪心选择,但不足的是,如果当前选择可能要依赖子问题的解时,则难以通过局部的贪心策略达到全局最优解。
相比而言,动态规划则可以处理不具有贪心实质的问题。 在用分治法解决问题时,由于子问题的数目往往是问题规模的指数函数,因此对时间的消耗太大。
动态规划的思想在于,如果各个子问题不是独立的,不同的子问题的个数只是多项式量级,如果我们能够保存已经解决的子问题的答案,而在需要的时候再找出已求得的答案,这样就可以避免大量的重复计算。 由此而来的基本思路是,用一个表记录所有已解决的子问题的答案,不管该问题以后是否被用到,只要它被计算过,就将其结果填入表中。
比较感性的说,其实动态规划的思想是对贪心算法和分治法的一种折衷,它所解决的问题往往不具有可爱的贪心实质,但是各个子问题又不是完全零散的,这时候我们用一定的空间来换取时间,就可以提高解题的效率。 二、动态规划的基本步骤 动态规划算法通常用于求解具有某种最优性质的问题。
在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值(最大值或最小值)的那个解。
设计一个动态规划算法,通常可以按以下几个步骤进行: (1)找出最优解的性质,并刻画其结构特征。 (2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。 (4)根据计算最优值时得到的信息,构造一个最优解。
其中(1)——(3)步是动态规划算法的基本步骤。在只需要求出最优值的情形,步骤(4)可以省去。
若需要求出问题的一个最优解,则必须执行步骤(4)。 此时,在步骤(3)中计算最优值时,通常需记录更多的信息,以便在步骤(4)中,根据所记录的信息,快速构造出一个最优解。
三、典型的动态规划举例——矩阵连乘问题 作为经典的动态规划算法举例,矩阵连乘问题很好地展现了动态规划的特点和实用价值。 给定n个矩阵{A1,A2,。
,An},其中Ai与Ai 1是可乘的,i=1,2,。
n-1。
现在要计算这n个矩阵的连乘积。由于矩阵的乘法满足结合律,所以通过加括号可以使得计算矩阵的连乘积有许多不同的计算次序。
然而采用不同的加扩号方式,所需要的总计算量是不一样的。 若A是一个p*q矩阵,B是一个q*r矩阵,则其乘积C=AB是一个p*r矩阵。
如果用标准算法计算C,总共需要pqr次数乘。 现在来看一个例子。
A1,A2,A3分别是10*100,100*5和5*50的矩阵。 如果按照((A1A2)A3)来计算,则计算所需的总数乘次数是10*100*5 10*5*50=7500。
如果按照(A1(A2A3))来计算,则需要的数乘次数是100*5*50 10*100*50=75000,整整是前者的10倍。由此可见,在计算矩阵连乘积时,不同的加括号方式所导致的不同的计算对计算量有很大的影响。
如何确定计算矩阵连乘积A1A2,。
,An的一个计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少便成为一个问题。
对于这个问题,穷举法虽然易于入手,但是经过计算,它所需要的计算次数是n的指数函数,因此在效率上显得过于低下。 现在我们按照动态规划的基本步骤来分析解决这个问题,并比较它与穷举法在时间消耗上的差异。
(1)分析最优解的结构。 现在,将矩阵连乘积AiAi 1。
Aj简记为A[i:j]。对于A[1:n]的一个最优次序,设这个计算次序在矩阵Ak和Ak 1之间将矩阵链断开(1 *max) *max= A; if(A } } 上面这个算法需比较2(n-1)次。
能否找到更好的算法呢?我们用分治策略来讨论。 把n个元素分成两组: A1={A[1],。
,A[int(n/2)]}和A2={A[INT(N/2) 1],。
,A[N]} 分别求这两组的最大值和最小值,然后分别将这两组的最大值和最小值相比较,求出全部元素的最大值和最小值。
如果A1和A2中的元素多于两个,则再用上述方法各分为两个子集。直至子集中元素至多两个元素为止。
例如有下面一组元素:-13,13,9,-5,7,23,0,15。用分治策略比较的过程如下: 图中每个方框中,左边是最小值,右边是最大值。
从图中看出,用这种方法一共比较了10次,比直接比较法的14次减少4次,即约减少了1/3。算法如下: void maxmin2(int A[],int i,int j,int *max,int *min) /*A存放输入的数据,i,j存放数据的范围,初值为0,n-1,*max,int *min 存放最大和最小值*/ { int mid,max1,max2,min1,min2; if (j==i) {最大和最小值为同一个数;return;} if (j-1==i) {将两个数直接比较,求得最大会最小值;return;} mid=(i j)/2; 求i~mid之间的最大最小值分别为max1,min1; 求mid 1~j之间的最大最小值分别为max2,min2; 比较max1和max2,大的就是最大值; 比较min1和min2,小的就是最小值; } 利用分治策略求解时,所需时间取决于分解后子问题的个数、子问题的规模大小等因素,而二分法,由于。
3.算法优化的意义
算法优化的意义:
一般来说,算法优化是进行网站建设或者是数据模型建设时,常用的一种优化模式。算法优化的目的和意义在于:提升网站的面向能力、图片的展现能力、以及提升读者的便利性。
优化算法有很多,关键是针对不同的优化问题,例如可行解变量的取值(连续还是离散)、目标函数和约束条件的复杂程度(线性还是非线性)等,应用不同的算法。
对于连续和线性等较简单的问题,可以选择一些经典算法,如梯度、矩阵、乘数、单纯形法、梯度下降法等,而这些也是算法优化和另猫电商中比较常见的。而对于更复杂的问题,则可考虑用一些智能优化算法,如遗传算法和蚁群算法,此外还包括模拟、禁忌搜索、粒子群算法等。
4.计算机专业本科生做毕业论文一般用什么算法
一个程序的核心在于算法。比如说打开一个软件和运行一个软件的速度在计算机硬件性能相同情况下,软件的算法起到了几近决定性作用,所有的计算机软件和硬件的编程都是需要算法的,就算一个hello world程序虽然我们编时候没有用到算法但是在编译他和运行再屏幕显示的时候就是算法了。算法是计算机乃至自然界的核心,如果知道人脑的算法,就可以制造出人工智能的软件。
算法太多,也就不全部列举出来了,具体的还有用法,你自己看下书或去网上找下,都应该可以找到的:比如:贪心算法,蚁群算法,遗传算法,进化算法,基于文化的遗传算法,禁忌算法,蒙特卡洛算法,混沌随机算法,序贯数论算法,粒子群算法,模拟退火算法等等。
转载请注明出处众文网 » ga算法的优化毕业论文