1.《无理数的发现》论文 400字即可,谢谢
无理数”的由来
公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可子希勃索斯公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭.这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位.希勃索斯因此被囚禁,受到百般折磨,最后竟遭到沉舟身亡的惩处.
毕氏弟子的发现,第一次向人们揭示了有理数系的缺陷,证明它不能同连续的无限直线同等看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”.而这种“孔隙”经后人证明简直多得“不可胜数”.于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了.不可公度量的发现连同著名的芝诺悖论一同被称为数学史上的第一次危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽.
不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数.15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数.
然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”.人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来.
2.谈一下无理数的e(2.71828)应用
e在科学技术中用得非常多,一般不使用以10为底数的对数.以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”. 这里的e是一个数的代表符号,而我们要说的,便是e的故事.这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1.这个e究竟是何方神圣呢? 在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表.教科书里的对数表,是以10为底的,叫做常用对数(common logarithm).课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角.不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这么奇怪的数,会有什么故事可说呢? 这就要从古早时候说起了.至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的.那么是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关. 我们都知道复利计息是怎么回事,就是利息也可以并进本金再生利息.但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高.有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什么状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e).所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的. 包罗万象的e 读者恐怕已经在想,光是计算利息,应该不至于能讲一整本书吧?当然不,利息只是极小的一部分.令人惊讶的是,这个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联.在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能.问题虽然都不一样,答案却都殊途同归地指向e这个数.比如其中一个有名的问题,就是求双曲线y=1/x底下的面积.双曲线和计算复利会有什么关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联.我才举了一个例子而已,这本书里提到得更多. 如果整本书光是在讲数学,还说成是说故事,就未免太不好意思了.事实上是,作者在探讨数学的同时,穿插了许多有趣的相关故事.比如说你知道第一个对数表是谁发明的吗?是纳皮尔(John Napier).没有听说过?这很正常,我也是读到这本书才认识他的.重要的是要下一个问题.你知道纳皮尔花了多少时间来建构整个对数表吗?请注意这是发生在十六世纪末、十七世纪初的事情,别说电脑和计算机了,根本是什么计算工具也没有,所有的计算,只能利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算.因此纳皮尔整整花了二十年的时间建立他的对数表,简直是匪夷所思吧!试著想像一下二十年之间,每天都在重复做同类型的繁琐计算,这种乏味的日子绝不是一般人能忍受的.但纳皮尔熬过来了,而他的辛苦也得到了报偿——对数受到了热切的欢迎,许多欧洲甚至中国的科学家都迅速采用,连纳皮尔也得到了来自世界各地的赞誉.最早使用对数的人当中,包括了大名鼎鼎的天文学家刻卜勒,他利用对数,简化了行星轨道的繁复计算. 在《毛起来说e》中,还有许多我们在一般数学课本里读不到的有趣事实.比如第一本微积分教科书是谁写的呢?(假如你曾受微积分课程之苦,也会想知道谁是「始作俑者」吧?」)是罗必达先生.对啦,就是罗必达法则(L'Hospital's Rule)的那位罗必达.但是罗必达法则反倒是约翰.伯努利先发现的.不过这无关乎剽窃的问题,他们之间是有协议的. 说到伯努利可就有故事说了,这个家族实在不得了,别的家族出一位天才就可以偷笑了,而他们家族的天才是用「量产」形容.伯努利们前前后后在数学领域中活跃了一百年,他们的诸多成就(不仅止于数学领域),就算随便列一列,也有一本书这么厚.不过这个家族另外擅长的一件事就不太敢恭维了,那就是吵架.自家人吵不够,也跟外面的人吵(可说是「表里如一」).连爸爸与儿子合得一个大奖,爸爸还非常不满意,觉得应该由自己独得,居然气得把儿子赶出家门;和现代的许多「孝子」们比起来,这位爸爸真该感到惭愧. e的「影响力」其实还不限於数学领域.大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的.建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e.这些与计算利率或者双曲线面积八竿。
3.plc的毕业论文
PLC的,一百多份,有用的话,加分给我, 1. 基于FX2N-48MRPLC的交通灯控制 2. 西门子PLC控制的四层电梯毕业设计论文 3. PLC电梯控制毕业论文 4. 基于plc的五层电梯控制 5. 松下PLC控制的五层电梯设计 6. 基于PLC控制的立体车库系统设计 7. PLC控制的花样喷泉 8. 三菱PLC控制的花样喷泉系统 9. PLC控制的抢答器设计 10. 世纪星组态 PLC控制的交通灯系统 11. X62W型卧式万能铣床设计 12. 四路抢答器PLC控制 13. PLC控制类毕业设计论文 14. 铁路与公路交叉口护栏自动控制系统 15. 基于PLC的机械手自动操作系统 16. 三相异步电动机正反转控制 17. 基于机械手分选大小球的自动控制 18. 基于PLC控制的作息时间控制系统 19. 变频恒压供水控制系统 20. PLC在电网备用自动投入中的应用 21. PLC在变电站变压器自动化中的应用 22. FX2系列PCL五层电梯控制系统 23. PLC控制的自动售货机毕业设计论文 24. 双恒压供水西门子PLC毕业设计 25. 交流变频调速PLC控制电梯系统设计毕业论文 26. 基于PLC的三层电梯控制系统设计 27. PLC控制自动门的课程设计 28. PLC控制锅炉输煤系统 29. PLC控制变频调速五层电梯系统设计 30. 机械手PLC控制设计 31. 基于PLC的组合机床控制系统设计 32. PLC在改造z-3040型摇臂钻床中的应用 33. 超高压水射流机器人切割系统电气控制设计 34. PLC在数控技术中进给系统的开发中的应用 35. PLC在船用牵引控制系统开发中的应用 36. 智能组合秤控制系统设计 37. S7-200PLC在数控车床控制系统中的应用 38. 自动送料装车系统PLC控制设计 39. 三菱PLC在五层电梯控制中的应用 40. PLC在交流双速电梯控制系统中的应用 41. PLC电梯控制毕业论文 42. 基于PLC的电机故障诊断系统设计 43. 欧姆龙PLC控制交通灯系统毕业论文 44. PLC在配料生产线上的应用毕业论文 45. 三菱PLC控制的四层电梯毕业设计论文 46. 全自动洗衣机PLC控制毕业设计论文 47. 工业洗衣机的PLC控制毕业论文 48. 《双恒压无塔供水的PLC电气控制》 49. 基于三菱PLC设计的四层电梯控制系统 50. 西门子PLC交通灯毕业设计 51. 自动铣床PLC控制系统毕业设计 52. PLC变频调速恒压供水系统 53. PLC控制的行车自动化控制系统 54. 基于PLC的自动售货机的设计 55. 基于PLC的气动机械手控制系统 56. PLC在电梯自动化控制中的应用 57. 组态控制交通灯 58. PLC控制的升降横移式自动化立体车库 59. PLC在电动单梁天车中的应用 60. PLC在液体混合控制系统中的应用 61. 基于西门子PLC控制的全自动洗衣机仿真设计 62. 基于三菱PLC控制的全自动洗衣机 63. 基于plc的污水处理系统 64. 恒压供水系统的PLC控制设计 65. 基于欧姆龙PLC的变频恒压供水系统设计 66. 西门子PLC编写的花样喷泉控制程序 67. 欧姆龙PLC编写的全自动洗衣机控制程序 68 景观温室控制系统的设计 69. 贮丝生产线PLC控制的系统 70. 基于PLC的霓虹灯控制系统 71. PLC在砂光机控制系统上的应用 72. 磨石粉生产线控制系统的设计 73. 自动药片装瓶机PLC控制设计 74. 装卸料小车多方式运行的PLC控制系统设计 75. PLC控制的自动罐装机系统 76. 基于CPLD的可控硅中频电源 77. 西门子PLC编写的花样喷泉控制程序 78. 欧姆龙PLC编写的全自动洗衣机控制程序 79. PLC在板式过滤器中的应用 80. PLC在粮食存储物流控制系统设计中的应用 81. 变频调速式疲劳试验装置控制系统设计 82. 基于PLC的贮料罐控制系统 83. 基于PLC的智能交通灯监控系统设计。
4.e为什么是无理数
e 是自然对数的底 ,简单的说,e就是使y=a^x的图像在x=0处斜率为1的a的值。大约值为e=:2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353
至于e的得出,可以用公式(2π)^4*g^3*e =1000
或者利用展开式“e=1+1/1!+1/2!+1/3!+。+1/n!=∑1/n!”
它是这样定义的:
当n->;∞时,(1+1/n)^n的极限。
注:x^y表示x的y次方。
它就类似我们的圆周率一样,是一个常量
你看,随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.71828……,不信你用计算器计算一下,分别取n=1,10,100,1000。但是由于一般计算器只能显示10位左右的数字,所以再多就看不出来了。
e在科学技术中用得非常多,一般不使用以10为底数的对数。学习了高等数学后就会知道,以e为底数,许多式子都能得到简化,用它是最“自然”的,所以叫“自然对数”。 我给你介绍一本关于它的书,很精彩.不访买来一读:
5.毕业论文题目选择
1 函数逼近 2数的进制问题 3无穷维矩阵与序列Bannch空间的关系 4 多媒体课件教学设计----若干中小学数学教学案例 5 从一维,二维空间到欧氏空间 6 初中数学新课程数与代数学习策略研究 7 初中数学新课程统计与概率学习策略研究 8 对中学数学研究性学习开展过程及其途径的思考 9 函数列运算的顺序交换及条件 10儒歇定理的推广和应用(复变函数-辐角原理) 11解析函数的各种等价条件及其应用 12特征函数在概率论中的应用 13数学史与中学教育 14让生活走进数学,将数学应用于生活——谈xx数学方法的应用 15数学竞赛中的数论问题 16新旧教材的对比与研究 17近世代数在中学数学中的应用 18随机变量分布规律的求法 19简述概率论与数理统计的思想方法及其应用 20无穷大量存在的意义 21中学数学竞赛中参数问题 22例谈培养数学思维的深刻性 23圆周率与中学数学史 24从坐标系到向量空间的基 25谈谈反证法 26一致连续性的判断定理及性质 27课堂提问和思维能力的培养 28从数学高考试题的演变看中学数学教育改革 29凸函数及其在证明不等式中的应用 30极值的讨论及其应用 31正难则反,从反面来考虑问题 32实数的构造,完备性及它们的应用 33谈数学创新思维的训练 34简述期望的性质及其作用 35简述概率论与数理统计的思想和方法 36无穷乘积 37由递推式求数列的通项及和 38浅谈划归思想在数学中的应用 39凸函数的定义性质及应用 40行列式的计算方法 41可行解的表式定理的证明 42直觉思维在中学数学中的应用 43高等数学在中学数学中的应用 44充分挖掘例题的数学价值和智力开发功能 45数学思想方法的一支奇葩-----数学猜想初探 46关于实变函数中叶果罗夫定理的鲁津定理的证明 47关于黎曼积分的定义 48常微分方程的历史发展 49概率论发展史及其简单应用 50中学数学教学中创新思维的培养策略 51对数学教学中使用多媒体的几点思考 52矩阵特征值的计算方法初探 53数学结合思想及其应用 54关于上.下确界,上.下极限的定义,性质及应用 55复均方可积随机变量空间的讨论 56浅谈中学数学的等价转换 57车灯线光源的优化设计模型 58中学数学中的变式教学设计 59欧几里得第五公设产生背景及其对数学发展影响 60中学数学问题解决的学习策略研究 61变分法 62抽屉原理的应用及推广 63浅议函数迭代及其表达式 64加强数形结合,提高解题能力 65函数性质的应用 66求初等函数的值域 67中学数学应用意识的研究 68初中数学新课程空间与图形学习策略与研究 69浅谈分类讨论及解题应用 70排序方法及其应用 71从数学应用意识的培养看数学基础教育改革 72函数的凸性及其在不等式中的应用 73建构主义理论指导下的数学教学案例 74中学课程数学教学思想方法教学初探 75大学生数学素质教育思考 76数学归纳法教学探究 77师范学生高等数学课程内容设置的探讨 78统计学在证券市场中的应用 79关于全概率公式及其应用的研究 80数学开放式教学的基本理念与策略 81变量代换法与常微分方程的求解 83奥赛中组合计算方法及应用 84代数结构中同态及同构的性质 85综述十八世纪著名数学家及其工作 86谈谈不定方程 87从不定方程到孙子兵法 88略谈我国古代的数学成就 89分类思想在中学数学中的应用 90从笛卡尔的“万能代数模型”谈函数与方程的思想 91数学美在中学数学教学中的育人功能初探 92新课程理念下中学教师行为的改变 93对各种导数的研究 94不等式解法大观 95谈谈“隐函数” 96有限维矩阵的范数计算与估计 97数学奥赛中数论问题的解题方法研究 98猜想和联想 99微分方程积分因子的研究 100数的趣谈 101泰勒公式 102解析函数的孤立奇点的分类及其判断方法 103最大模原理的推广及其应用 104π的奥秘——从圆周率到统计 105对现代信息技术辅助数学及其发展的几点思考 106无理数e的发现及其应用 107初中数学新课程综合实践活动策略研究 108闭区间套定理的推广和应用 109函数的上下极限及其应用 110度量空间 111关于多值函数的解析理论探讨 112数论中一两个问题 113正多边形的对角线与边长的公度问题 114比较函数法在常微分方程中的应用 115数学分析的直观与严密 116浅谈中学数学中的构造法 117谈待定系数法在中学解题中的应用 118常微分方程与初等数学 119求随机函数的分布函数和分布密度的方法 120条件期望的性质及其应用 121从高中数学课程改革看未来的高师数学系的本科教学 122课程改革中未来高中数学教师角色的扮演 123向量代数在中学中的应用 124凸函数的等价命题及其应用 125带权图的若干应用 126有界变差函数的定义及其性质 127初等函数的极值 128数学竟赛中的不等式问题 129常微分方程各种解的定义,关系及判定方法 130三阶变系数线性常微分方程 131常微分方程的发展及应用 132常微分方程的初等解法求解技巧 133常系数线性方程组基解矩阵的计算 134高阶方程的降阶计巧。
6.【无理数的概念】
无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环.常见的无理数有大部分的平方根、π和e(其中后两者同时为超越数)等.无理数的另一特征是无限的连分数表达式.传说中,无理数最早由毕达哥拉斯学派弟子希伯斯发现.他以几何方法证明无法用整数及分数表示.而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在.但是他始终无法证明不是无理数,后来希伯斯将无理数透露给外人——此知识外泄一事触犯学派章程——因而被处死,其罪名等同于“渎神”.。
7.关于 数学:e的值
是自然对数的底数,是一个无限不循环小数,其值是2.71828……,是这样定义的:当n->;∞时,(1+1/n)^n的极限。
注:x^y表示x的y次方。
在高中数学里,会学到对数(logarithm)的观念,会使用对数表。教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm)。
无理数e的前1000位如下:
e=2.……
转载请注明出处众文网 » 关于无理数e的毕业论文