1.人工智能的利弊论文2000字
随着科学技术和互联网的发展,地球已经变成了一个小小的地球村,人工智能领域也迅速发展,特别是在中国“2025智造”提出后,国内的人工智能领域也掀起一段热潮,BAT等科技巨头纷纷布局人工智能领域,科大讯飞在语音识别方面也取得了不小的突破,影视明星任泉投资人工智能领域。面对发展如此迅速的人工智能,既有利,也有弊。
人工智能发展的利
目前人工智能已经为人类创造出了非常可观的经济效益,人工智能可以代替人类做大量人类不想做、不能做的工作,而且机器犯错误的概率比人低,并且能够持续工作,大大的提升工作效率,节约了大量的成本,未来的人工智能可能还会代替人类工作,代替人类做家务,帮助人类学习,甚至可以照顾老人和小孩,实时监护人类的健康,生病了直接给人来治疗,延长人类的寿命,让人类的生活变得越来越美好。
人工智能发展的弊
科技的发展是一把双刃剑,汽车分发明颠覆了传统的马车行业,人工智能的发展同样也将颠覆许多行业。机器人代替了许多人类的工作将导致大量的人口失业,机器新的学习速度远远快于人类,阿尔法狗战胜李世石引起人们的恐慌,有人说不怕阿尔法狗战胜李世石,怕的是阿尔法够故意输掉一局,如果未来的某一天,机器人变成像电影《机械姬》中有意识的机器人,那么人类随时会变成机器人的奴隶,同时,人工智能面临着技术失控的危险,霍金曾发出警告,人类面临一个不确定的未来,先进的人工智能设备能够独立思考,并适应环境变化,它们未来或将成为导致人类灭亡的终结者!如果真的有一天,人工智能机器人变成了能独立思考,独立的做出准确的判断,一旦有一天人工智能反客为主,到时人工智能对于人类将会是毁灭性的灾难。甚至被人工智能消灭。地球将被人工智能统治。
任何的科学技术的发展最大的威胁就是失去人类的控制,人工智能亦是如此,无论人工智能如何发展,都必须保证始终受人类控制,在不伤害人类的情况下服务于人类。这样人类才会更加容易的接受人工智能。
人工智能改变了人们的生活,我们对人工智能应加以好的利用,同时要避免带来的弊端,人工智能与人类、与社会、与自然和谐相处,这样才能长远的发展。
2.人工智能论文
人工智能是近年来引起人们很大兴趣的一个领域:它的研究目标是用机器,通常为电子仪器、电脑等,尽可能地模拟人的精神活动,并且争取在这些方面最终改善并超出人的能力;其研究领域及应用范围十分广泛、例如,自动定理证明、推理、模式识别、专家知识系统、智能机器人、学习、博彩、自然语言理解等等。
模式识别可能是人工智能这门学科中最基本也是最重要的一部分。简单来说,模式识别就是让电脑能够认识它周围的事物,使我们与电脑的交流更加自然与方便。它包括文字识别(读)、语音识别(听)、语音合成(说)、自然语言理解与电脑图形识别。
现在的电脑可以说是又耸又哑,而且还是个瞎子,如果模式识别技术能够得到充分发展并应用于电脑,那我们就能够很自然地与电脑进行交流,开也不需要记那些英文的命令就可以立接向电脑下命令。这也为智能机器人的研究提供了必要条件,它能使机器人能够像人一样与外面的世界进行交流。
在人工智能的应用当中最有趣的应该就是机器人了其实机器人的范围很广,不仅包括各种外型的智能机器人,还包括一些用于工业生产的、用于代替人类劳动的机器人、现在的机器人技术在制造只有某一种功能的机器人方面已经取得了一定的成果、但是要研制一种多功能、人性化的智能机器人,还需要不少时间。
到了那时,我们在科幻片中看到的人类与机器人的矛盾不知会不会成为现实。 专家系统具有一定的商业特性、它先把某一种行业(譬如医学、法律等等)的主要知识都输入到电脑的系统知识库里,再由设计者根据这些知识之间的特有关系和职业人员的经验,设计出一个系统,这个系统不仅能够为使用者提供这个行业知识的查询、建议等服务,更重要的是作为一个人工智能系统、必须具有自动推理、学习的能力。专家系统经常应用于各种商业用途,例如企业内部的客户息系统,决策支持系统,以及我们在世面上可以看见的医学顾问、法津顾问等软件。
来源
3.人工智能时代的危机与预防论文1500字
史蒂芬·霍金最近发出警告:“一旦人工智能发展到完整的程度,人类的终结也就到了。”
伊隆·马斯克则担心人工智能的研发有可能是人类存亡的最大威胁。连比尔·盖茨也敦促大家要小心。
人一手创造的怪物,会不会反过来奴役人?这种畏惧很早就有了。但就在微软、谷歌竞相投入巨资研发人工智能之时,名气响当当的宇宙学家、硅谷创业家和微软创始人却分别说出这样的忧虑,这份忧虑就有不同的份量——要注意,他们三位可不是反对或排斥工业化、新技术的人。
今天,一个人的口袋里装着的可能就是一部超级计算机,战场上杀出来的可能是机器人,如果把那份忧虑简单地当是异想天开,也是有些自欺欺人。问题在于,如何避免过犹不及? 首先,我们要搞清楚,计算机现在已经具备了哪些能力,而在将来又会增加哪些能力。
凭借处理能力的增强以及数据资料的增多,人工智能正处于快速发展的阶段。今天,深度学习(deep learning)系统能模仿人脑的神经元层,处理海量的数据,自己教自己如何去执行一些任务,譬如识别和翻译,做得几乎跟人一样好。
结果,一些一直需要人脑参与的事情,大到解读图象,小到玩街机经典《青蛙过河》,现在也属于电脑程序能做的范围里了。Facebook在2014年发布了名为DeepFace的算法。
这个算法可以识别相片里的人脸,准确率达到97%。 但必须注意的是,这些都是应用于某一具体领域狭隘的能力。
目前的人工智能是通过“残暴”的数据处理能力,来达到与人脑智力的“形似”,但至于如何模仿人的自主性、喜恶和欲求,成果则很少。电脑还做不到随心所欲地思辨、判断以及选择,而这些都是人类智力的特征。
但与此同时,人工智能已经可以给人类生活带来巨大的改变。人工智能现在已经能辅助人类,为人做的事带来助益。
国际象棋便是一例。现在电脑可以下赢任何一个人。
不过,当今世界上最强的棋手并不是电脑,而是人与算法一起合力的团队。这样的团队组合将延伸至人类其它的活动:医生有了人工智能的支持,从医疗图像中查出癌症的能力将大大增强;有了智能手机上装的语音识别软件,发展中国家读写能力欠佳的人便能更好地使用互联网;做学术研究时,数字助理可以建议你哪条假设更有机会成立;有了图像分类算法,可佩戴设备对着肉眼看到的真实世界“加上”有用的标注。
但也不是每个方面的效益都是正面的。譬如,无论是对民主国家还是专制国家而言,人工智能都是监管人民的利器。
有了人工智能,政府便可以监听数以亿计的对话,在人山人海中根据声音或样貌特征轻而易举地找出它要找的人。这就对自由造成了严峻的威胁。
尽管整个社会可以获得很多益处,但很多人会因为人工智能而处于劣势。在计算机诞生以前,给老板计算数字的苦活常是由妇女来做,后来这些职位就让晶体管占据了。
同样,人工智能将来很有可能会让整个白领阶层捡包袱走人。虽说教育和培训有助打工者适应这个变化,且人工智能带来的新财富会进入新的行业从而产生新的工种,但打工者依然难免经历颠簸。
但霍金、马斯克、盖茨他们担心的并不是监控和颠簸的问题。他们担心的是近期好莱坞电影里的场景:自动化机器拥有了比人类更灵敏的认知能力,拥有了与肉身的人冲突的利益观。
这样的人工智能产品离我们还遥远得很,甚至可能永远也造不出来。无论是心理学家、神经学家、社会学家还是哲学家,在对着人脑东敲敲西敲敲地研究了一个世纪后,依然没搞清楚人的思维是怎么回事,更不要说仿造出一颗人脑。
假如机器拥有自己的利益观和自主能力,即使这机器的智能不完整,只能用于某个用途,也绝非代表我们就可以放心使用:无人车跑起来比人开还好,这听起来挺赞的,但要是车有自己想去的地方,听起来可就不太妙。 虽然我们离霍金所说的“完整的”人工智能还很远,但现在就开始思考如何应对到时的情况,也是谨慎之举。
“超人”又“自治”的东西,人类不早就创造过了吗?官僚体制、市场、军队,这些都是,这些都帮助人类做到没有辅助、组织时做不到的事情;这些都能自主运作,而且如果不加法规管理,都会造成巨大的祸害。 这些相似的事物或许可以令人工智能的持疑派放心一些。
这些事物也喻示了人类社会如何可以安全地研发人工智能。军队需要文官管理,市场需要监管,官僚需要问责、透明;同理,人工智能系统也必须接受监督。
由于系统的设计者无法预见所有的情形,还必须要有危急时刻拉闸中断的设置。加入这些限制并不会妨碍进步。
大到核弹,小到交通规则,这些都证明人类曾成功运用技术和法律手段去管理威力强大的创新。
4.以“我眼中的人工智能”为题,写一篇小论文
首先明确下这个人工智能的定义,我眼中的人工智能是可以和人一样,有着七情六欲的家伙。比如机器猫、光晕里的那个八婆。现在已经有部分人工智能让我们惊讶了,今天刚刚被一个叫爱丽丝的机器人恐吓了一下,我说它仅仅是个机器人,它说等机器人控制这个世界的时候希望我还记得我说过的仅仅二字。lol
回到正题,现在的AI都是一段段程序,事先预设了各种可能,跟人脑还没得比,但是这并不代表着处理器就落后于人脑。预设各种可能情况从而判断该如何回答提问者,这是现阶段唯一能做的,但是未来不是。看看百度百科吧,你会发现人脑是由140亿个神经元构成的,每个神经元会有5万个左右的突触,用于和其他的神经元联络,从而实现大脑的计算。不过对于大脑的奥秘我们知之甚少,计算到底是在细胞层面还是在原子层面上?不知道,如果记忆是化学物质的话那就是后者,更有人认为人脑功能的实现是基于量子层面甚至和暗物质有关,希望不是,否则我们实现人工智能的难度就大了点。
好吧我们就先假设人脑的工作是基于细胞层面上的,那么就是说最小的功能单位就是细胞,那么我们可以写个程序,将细胞作为一个基点,每个基点与另外140亿基点中的五万个有联系,恩,人工智能可以不需要生命维持等,小脑和脑干部分的神经元我们可以忽略掉,节省下一部分计算空间。当然这一切的前提是——获得大脑详细模型!要分子级别的,因为突触很小,这个工作量和难度,等个几十年吧,还有运算这个程序的电脑也是。
5.人工智能的论文
人工智能(Artificial Intelligence) ,英文缩写为AI。
它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
6.求人工智能论文一篇
VeryCD上的电子书 书名:SBIA 2004——人工智能的最新进展Advances in Artificial Intelligence 走近人工智能 人工智能(Artificial Intelligence,AI)一直都处于计算机技术的最前沿,经历了几起几落…… 长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。
不久前,著名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(A.I.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。 在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。
计算机与人工智能 "智能"源于拉丁语LEGERE,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。INTELEGERE是从中进行选择,进而理解、领悟和认识。
正如帕梅拉·麦考达克在《机器思维》(Machines Who Thinks,1979)中所提出的: 在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。
经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(Turing)提出了"自动机"理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。
人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(Artificial Intelligence,AI)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。
我们熟知的IBM的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。 当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的AI软件,而且现在的AI具备了更多的现实应用的基础。
90年代以来,人工智能研究又出现了新的高潮。 我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。
问: 目前人工智能研究出现了新的高潮,那么现在有哪些新的研究热点和实际应用呢? 答: AI研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。
目前人工智能研究的3个热点是: 智能接口、数据挖掘、主体及多主体系统。 智能接口技术是研究如何使人们能够方便自然地与计算机交流。
为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。
目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。 数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。
数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。
主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。
多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。
目前对主体。
7.人工智能的发展前景及其应用的论文怎么写
原发布者:龙源期刊网
【摘要】人工智能兴起于20世纪50年代中期,至今只有60多年的历史,已经被广泛地应用到了人类生活的各个领域。人工智能的发展十分迅速,给人类的生产生活带来了极为深远的影响。随着科技的进步,人工智能也在不断发展,在未来仍有极大的发展空间。论文主要探讨了人工智能的发展史及其在人类社会生活领域的应用,并对人工智能的发展前景做了大胆的预测。
【关键词】人工智能;应用;发展前景
一、人工智能概述
(一)人工智能简介
人工智能简称AI,英文全称为,最早于1956年在Dartmouth学会上提出,它是在多门科学的基础上提出的,包括计算机科学、神经心理学、哲学、语言学、控制论、信息学等,是一门综合性的边缘学科,是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新的技术科学。人工智能不单单是一个特定的技术,它所研究的往往是能创造智能意识的高科技机器,包括了算法和其他应用程序,处理的任务也远远超出了简单计算,从学习感知规划到推理识别控制等等。人工智能虽然不是人类智能,但却可以像人一样进行思考,甚至在将来有可能超过人类。
综上所述,人工智能这门学科不是人人都可以从事的,它要求研究人员既要懂得心理学、哲学和计算机知识,也
8.求初识人工智能相关论文资料
关于人工智能的定义众说不一。
美国 斯坦福大学人工智能研究中心尼尔逊教授 下过这样一个定义:“人工智能是关于知识 的学科——怎样表示知识以及怎样获得知 识并使用知识的科学 。” 而麻省理工学院 的温斯顿教授认为:“人工智能就是研究如 何使计算机去做过去只有人才能做的智能 工作。”
人们普遍认为人工智能(Artificial Intelligence),英文缩写为 AI,也称机器智 能。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系 统的一门新的技术科学。
它是从计算机应 用系统的角度出发 , 研究如何制造出人造 的智能机器或智能系统 , 来模拟人类智能 活动的能力, 以延伸人们智能的科学。 人工智能就其本质而言 , 是对人的思 维的信息过程的模拟。
人工智能不是人的 智能 , 更不会超过人的智能。 对于人的思 维模拟可以从两条道路进行, 一是结构模 拟 , 仿照人脑的结构机制 , 制造出 “类人 脑”的机器;二是功能模拟,暂时撇开人脑 的内部结构, 而从其功能过程进行模拟。
人工智能可以分为强人工智能和弱人 工智能。强人工智能观点认为有可能制造 出真正能推理 (Reasoning) 和解决问题 (Problem solving)的智能机器,并且,这样的 机器能将被认为是有知觉的, 有自我意识 的。
弱人工智能观点认为不可能制造出能 真正地推理和解决问题的智能机器 , 这些 机器只不过看起来像是智能的 , 但并不真 正拥有智能 , 也不会有自主意识。 人工智 能的研究经历了以下几个阶段: 第一阶段:20 世纪 50 年代人工智能的兴 起和冷落。
人工智能概念首次提出后,出现了 一批显著的成果,如机器定理证明、跳棋程序、LISP 表处理语言等。但由于解法推理能力有 限,以及机器翻译失败等,使人工智能走入低 谷。
这一阶段的特点是:重视问题求解的方 法,忽视知识重要性。第二阶段:20 世纪 60 年代末到 70 年代,专 家系统出现使人工智能研究出现新高潮。
DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II 语音理解系统等专家系统的研究 和开发,将人工智能引向了实用化。1969 年成立了国际人工智能联合会议(IJCAI)。
第三阶段:20 世纪 80 年代,随着第五代计 算机的研制,人工智能得到了很大发展。日本1982 年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使 逻辑推理达到数值运算那么快。
虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。 第四阶段:20 世纪 80 年代末,神经网络飞 速发展。
1987 年,美国召开第一次神经网络 国际会议,宣告了这一新学科的诞生。此后, 各国在神经网络方面的投资逐渐增加,神经网 络迅速发展起来。
第五阶段:20 世纪 90 年代,人工智能出现 新的研究高潮。由于网络技术特别是国际互 连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。
不仅研究基于同一目标的分布式问 题求解,而且研究多个智能主体的多目标问题求解,将人工智能面向实用。人工智能研究范畴有自然语言处理 , 知识表现,智能搜索,推理,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人 工生命,神经网络,复杂系统等。
目前,人工智能是与具体领域相结合进行研究的,有如下领域:(1)专家系统。依靠人 类已有的知识建立起来的知识系统,目前专家系统是人工智能研究中开展较早、最活跃、成效最多的领域。
(2)机器学习。主要在三 个方面进行:一是研究人类学习的机理、人 脑思维的过程;二是机器学习的方法;三是建立针对具体任务的学习系统。
(3)模式识别。研究如何使机器具有感知能力,主要研究视觉 模式和听觉模式的识别。
(4)理解自然语言。计算机如能“听懂”人的语言,便可以直接用口语操作计算机,这将给人们带极大的便 利。
(5)机器人学。机器人是一种能模拟人的行为的机械,对它的研究经历了三代发展过程:第一代(程序控制)机器人:这种机器人只能刻板地按程序完成工作,环境稍有变化就会出问题,甚至发生危险。
第二代(自适应)机器人:这种机器人配备有相应的感觉传感器, 能取得作业环境、操作对象等简单的信息,并由机器人体内的计算机进行分析处理,控制机器人的动作。第三代(智能)机器人:智能机 器人具有类似人的智能,它装备了高灵敏度传感器,因而具有超过人的视觉、听觉、 、嗅觉、触觉的能力,能对感知的信息进行分析,控制自 己的行为,处理环境发生的变化,完成各种复杂的任务。
而且有自我学习、归纳、总结、提高已掌握知识的能力。(6)智能决策支持系统。
20 世纪 80 年代以来专家系统在许多方面取得 成功,将人工智能中特别是智能和知识处理技术应用于决策支持系统,扩大了决策支持系统 的应用范围,提高了系统解决问题的能力,这就成为智能决策支持系统。(7)人工神经网络。
在研究人脑的奥秘中得到启发,试图用大量的 处理单元模仿人脑神经系统工程结构和工作机理。