1.毕业论文人脸图像压缩与重建
在图像处理领域中,图像的超分辨率重建技术和(略)个发展已经比较成熟的部分.本文从实际应用的要求出发,对二者的结合作了研究,即对压缩图像进行超分辨率重建. 论文主要做了以下工作:对图像压缩过程中(略)重建算法利用的运动补偿和量化进行了研究,简化并实现了MPEG-4的编码器;研究了空间域的凸集投影(POCS)超分辨率重建算法;实现了在压缩图像的变换域运用凸集投影算法来进行超分辨率重建. 实验证明,基于变换域的凸集投影算法能去除压缩过程带来的量化噪声,取得比传统解压后再进行普通超分辨率重建更好的效果.尤其在压缩比较大的情况下,重建效果更为明显。
2.毕业答辩时老师会问什么问题
==你是本科还是硕士啊 论文的话应该主要是算法的研究和改进吧……
问题比如:你采用了哪种人脸识别算法 你对这种算法的改进在哪里(你不只要说明改进在哪里 可能还需要做一些实验收集下数据来对比 说明算法在改进后对性能有了提升) 新算法比其他算法好在哪里(还是通过实验收集数据对比一下) 分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求 毕竟图像分析很占空间) 然后是怎样进行优化的 实验采用的样本是哪些(我们当时用的UC Irvine Machine Learning Repository 下面会有CMU Face Images 大家一般都用这个库来作为样本) 怎样对实验结果进行量化比较的(标准是什么)
如果是模式识别的话 还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的) 训练样本采用的什么算法 实验的识别率是多少 算法的性能是不是稳定……
==我想到的都是本科的问题 如果是研究生的话可能还会问的更难
3.毕业论文人脸图像压缩与重建
在图像处理领域中,图像的超分辨率重建技术和(略)个发展已经比较成熟的部分.本文从实际应用的要求出发,对二者的结合作了研究,即对压缩图像进行超分辨率重建. 论文主要做了以下工作:对图像压缩过程中(略)重建算法利用的运动补偿和量化进行了研究,简化并实现了MPEG-4的编码器;研究了空间域的凸集投影(POCS)超分辨率重建算法;实现了在压缩图像的变换域运用凸集投影算法来进行超分辨率重建. 实验证明,基于变换域的凸集投影算法能去除压缩过程带来的量化噪声,取得比传统解压后再进行普通超分辨率重建更好的效果.尤其在压缩比较大的情况下,重建效果更为明显。
4.要写毕业论文了,但是很纠结,不知道是单片机方面比较好写还是图像
个人感觉单片机方向的论文比较好写也比较简单,而且也比较容易做出实物答辩的时候拿高分,比如说做一个mp3什么的,只要熟悉下SPI协议,处理器用STM32F103x系列,然后再买一个VS1003b的mp3解码芯片,很容易就可以做一个mp3出来,不仅看起来高大上,做起来也很简单,晚上的教程一堆一堆的,拈来可得
图形学方面的本人入坑五六年,说来说去除了数学还是数学,赶论文很多地方自己都不明白,拿脸部识别来说ANN,SVM,Adaboost,哪个不要花个把来月琢磨,而且还是建立在有一定底子的基础上,代码参考OpenCV,除非觉得自己有把握,不建议本科或者非图形学专业的论文搞,难度我就不说了,谁学谁知道
转载请注明出处众文网 » 人脸识别毕业设计论文