1.关于水泥的论文
在传统上,混凝土是按强度进行设计的,对混凝土的质量的最终标准主要是强度。因此混凝土生产者对水泥品质的要求也是强调强度;强度越高的水泥被认为质量也越高。如此的发展,造成近年来混凝土结构出现裂缝尤其是早期开裂的现象日益普遍。其原因很复杂。单从水泥来说,比表面积、矿物组成中C3A、C3S、碱含量的增加,热水泥的出厂,都增加了开裂的敏感性,降低了流变性能,是原材料中影响混凝土质量主要原因。应当把抗裂性作为水泥品质的重要要求,并限制出厂水泥的温度。 (接上期)4水泥细度对混凝土工作性的影响目前我国混凝土尤其是中等以上强度等级的混凝土普遍使用高效减水剂和其他外加剂。当高效减水剂产品一定时,水泥的成分(主要是含碱量、C3A及其相应的SO3含量)和细度是影响水泥和高效减水剂相容性的主要因素。水泥细度的变化加剧了水泥与高效减水剂相容性问题。近两年时有发生高效减水剂的用户和厂家的纠纷。为此,天津雍阳外加剂厂丘汉用不同细度的天津P.O525水泥和拉法基P.O525水泥分别掺入不同量的UNF-5AS,进行相容性实验。采用水灰比为0.29的净浆,分别在搅拌后5分钟和60分钟后量测。
还有更多关于水泥的文章,请上去看看:
2.关于水泥的论文
在传统上,混凝土是按强度进行设计的,对混凝土的质量的最终标准主要是强度。
因此混凝土生产者对水泥品质的要求也是强调强度;强度越高的水泥被认为质量也越高。如此的发展,造成近年来混凝土结构出现裂缝尤其是早期开裂的现象日益普遍。
其原因很复杂。单从水泥来说,比表面积、矿物组成中C3A、C3S、碱含量的增加,热水泥的出厂,都增加了开裂的敏感性,降低了流变性能,是原材料中影响混凝土质量主要原因。
应当把抗裂性作为水泥品质的重要要求,并限制出厂水泥的温度。 (接上期)4水泥细度对混凝土工作性的影响目前我国混凝土尤其是中等以上强度等级的混凝土普遍使用高效减水剂和其他外加剂。
当高效减水剂产品一定时,水泥的成分(主要是含碱量、C3A及其相应的SO3含量)和细度是影响水泥和高效减水剂相容性的主要因素。水泥细度的变化加剧了水泥与高效减水剂相容性问题。
近两年时有发生高效减水剂的用户和厂家的纠纷。为此,天津雍阳外加剂厂丘汉用不同细度的天津P.O525水泥和拉法基P.O525水泥分别掺入不同量的UNF-5AS,进行相容性实验。
采用水灰比为0.29的净浆,分别在搅拌后5分钟和60分钟后量测。还有更多关于水泥的文章,请上去看看:。
3.大家有没有什么关于水泥方面的论文呀要教一片论文了,要5000字呢
水泥简史 cement一词由拉丁文caementum发展而来,是碎石及片石的意思。
水泥的历史最早可追溯到古罗马人在建筑中使用的石灰与火山灰的混合物,这种混合物与现代的石灰火山灰水泥很相似。用它胶结碎石制成的混凝土,硬化后不但强度较高,而且还能抵抗淡水或含盐水的侵蚀。
长期以来,它作为一种重要的胶凝材料,广泛应用于建筑工程。 1756年,英国工程师J。
斯米顿在研究某些石灰在水中硬化的特性时发现:要获得水硬性石灰,必须采用含有粘土的石灰石来烧制;用于水下建筑的砌筑砂浆,最理想的成分是由水硬性石灰和火山灰配成。 这个重要的发现为近代水泥的研制和发展奠定了理论基础。
1796年,英国人J。帕克用泥灰岩烧制出了一种水泥,外观呈棕色,很像古罗马时代的石灰和火山灰混合物,命名为罗马水泥。
因为它是采用天然泥灰岩作原料,不经配料直接烧制而成的,故又名天然水泥。 具有良好的水硬性和快凝特性,特别适用于与水接触的工程。
1813年,法国的土木技师毕加发现了石灰和粘土按三比一混合制成的水泥性能最好。 1824年,英国建筑工人J。
阿斯普丁取得了波特兰水泥的专利权。 他用石灰石和粘土为原料,按一定比例配合后,在类似于烧石灰的立窑内煅烧成熟料,再经磨细制成水泥。
因水泥硬化后的颜色与英格兰岛上波特兰地方用于建筑的石头相似,被命名为波特兰水泥。它具有优良的建筑性能,在水泥史上具有划时代意义。
1907年,法国比埃利用铝矿石的铁矾土代替粘土,混合石灰岩烧制成了水泥。 由于这种水泥含有大量的氧化铝,所以叫做“矾土水泥”。
1871年,日本开始建造水泥厂。 1877年,英国的克兰普顿发明了回转炉,并于1885年经兰萨姆改革成更好的回转炉。
1889年,中国河北唐山开平煤矿附近,设立了用立窑生产的唐山“细绵土”厂。 1906年在该厂的基础上建立了启新洋灰公司,年产水泥4万吨。
1893年,日本远藤秀行和内海三贞二人发明了不怕海水的硅酸盐水泥。 20世纪,人们在不断改进波特兰水泥性能的同时,研制成功了一批适用于特殊建筑工程的水泥,如高铝水泥,特种水泥等。
全世界的水泥品种已发展到100多种,2007年水泥年产量约20亿吨。 中国在1952年制订了第一个全国统一标准,确定水泥生产以多品种多标号为原则,并将波特兰水泥按其所含的主要矿物组成改称为矽酸盐水泥,后又改称为硅酸盐水泥至今。
2007年中国水泥年产量约11亿吨。水泥类型的定义 (1) 水泥:加水拌和成塑性浆体,能胶结砂、石等材料既能在空气中硬化又能在水中硬化的粉末状水硬性胶凝材料。
(2) 硅酸盐水泥:由硅酸盐水泥熟料、0%~5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,称为硅酸盐水泥,分P。 I和P。
II,即国外通称的波特兰水泥。 (3) 普通硅酸盐水泥:由硅酸盐水泥熟料、6%~15%混合材料,适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥(简称普通水泥),代号:P。
O。 (4) 矿渣硅酸盐水泥:由硅酸盐水泥熟料、粒化高炉矿渣和适量石膏磨细制成的水硬性胶凝材料, 称为 矿渣硅酸盐水泥,代号:P。
S。 (5) 火山灰质硅酸盐水泥:由硅酸盐水泥熟料、火山灰质混合材料和适量石膏磨细制成的水硬性胶凝材料。
称为火山灰质硅酸盐水泥,代号:P。P。
(6) 粉煤灰硅酸盐水泥:由硅酸盐水泥熟料、粉煤灰和适量石膏磨细制成的水硬性胶凝材料,称为粉煤灰硅酸盐水泥,代号:P。 F。
(7) 复合硅酸盐水泥:由硅酸盐水泥熟料、两种或两种以上规定的混合材料和适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥),代号P。C。
(8) 中热硅酸盐水泥:以适当成分的硅酸盐水泥熟料、加入适量石膏磨细制成的具有中等水化热的水硬性胶凝材料。 (9) 低热矿渣硅酸盐水泥:以适当成分的硅酸盐水泥熟料、加入适量石膏磨细制成的具有低水化热的水硬性胶凝材料。
(10)快硬硅酸盐水泥:由硅酸盐水泥熟料加入适量石膏,磨细制成早强度高的以3天抗压强度表示标号的水泥。 (11) 抗硫酸盐硅酸盐水泥:由硅酸盐水泥熟料,加入适量石膏磨细制成的抗硫酸盐腐蚀性能良好的水泥。
(12) 白色硅酸盐水泥:由氧化铁含量少的硅酸盐水泥熟料加入适量石膏,磨细制成的白色水泥。 (13) 道路硅酸盐水泥:由道路硅酸盐水泥熟练,0%~10%活性混合材料和适量石膏磨细制成的水硬性胶凝材料,称为道路硅酸盐水泥,(简称道路水泥)。
(14) 砌筑水泥:由活性混合材料,加入适量硅酸盐水泥熟料和石膏,磨细制成主要用于砌筑砂浆的低标号水泥。 (15) 油井水泥:由适当矿物组成的硅酸盐水泥熟料、适量石膏和混合材料等磨细制成的适用于一定井温条件下油、气井固井工程用的水泥。
(16) 石膏矿渣水泥:以粒化高炉矿渣为主要组分材料,加入适量石膏、硅酸盐水泥熟料或石灰磨细制成的水泥。
4.求一份5000字的混凝土毕业论文
毕业论文~大体积混凝土施工 班级: 学号: 姓名: 目录 一、施工方案的合理选择……………………………………………………1 二、连续浇捣混凝土时在拌合及运输方面应采取的措施…………………………….2 三、在施工过程中钢筋工程及模板工程的质量控制………………………………..2 四、外加剂的合理选择………………………………………………………………..6 五.高温条件下的混凝土浇筑质量……………………………………………………6 大体积混凝土施工中的质量控制 摘要:大体积混凝土的施工技术要求较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。
因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证大体积混凝土顺利施工。 关键词:大体积混凝土 施工方案 高温条件 钢筋模板 一、施工浇筑方案的选择: 大体积混凝土的施工技术要求比较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。
因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证大体积混凝土顺利施工。 1、材料选择 本工程采用商品混凝土浇筑。
对主要材料要求如下: (1)水泥:考虑普通水泥水化热较高,特别是应用到大体积混凝土中,大量水泥水化热不易散发,在混凝土内部温度过高,与混凝土表面产生较大的温度差,使混凝土内部产生压应力,表面产生拉应力。当表面拉应力超过早期混凝土抗拉强度时就会产生温度裂缝,因此确定采用水化热比较低的矿渣硅酸盐水泥,标号为525#,通过掺加合适的外加剂可以改善混凝土的性能,提高混凝土的抗渗能力。
(2)粗骨料:采用碎石,粒径5-25mm,含泥量不大于1%。选用粒径较大、级配良好的石子配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温升。
(3)细骨料:采用中砂,平均粒径大于0.5mm,含泥量不大于5%。选用平均粒径较大的中、粗砂拌制的混凝土比采用细砂拌制的混凝土可减少用水量10%左右,同时相应减少水泥用量,使水泥水化热减少,降低混凝土温升,并可减少混凝土收缩。
(4)粉煤灰:由于混凝土的浇筑方式为泵送,为了改善混凝土的和易性便于泵送,考虑掺加适量的粉煤灰。按照规范要求,采用矿渣硅酸盐水泥拌制大体积粉煤灰混凝土时,其粉煤灰取代水泥的最大限量为25%。
粉煤灰对水化热、改善混凝土和易性有利,但掺加粉煤灰的混凝土早期极限抗拉值均有所降低,对混凝土抗渗抗裂不利,因此粉煤灰的掺量控制在10以内,采用外掺法,即不减少配合比中的水泥用量。按配合比要求计算出每立方米混凝土所掺加粉煤灰量。
。 2、混凝土配合比 (1)混凝土采用搅拌站供应的商品混凝土,因此要求混凝土搅拌站根据现场提出的技术要求,提前做好混凝土试配。
(2)混凝土配合比应提高试配确定。按照国家现行《混凝土结构工程施工及验收规范》、《普通混凝土配合比设计规程》及《粉煤灰混凝土应用技术规范》中的有关技术要求进行设计。
(3)粉煤灰采用外掺法时仅在砂料中扣除同体积的砂量。另外应考虑到水泥的供应情况,以满足施工的要求。
二、连续浇捣混凝土时在拌合及运输方面应采取的措施 1、混凝土浇筑 (1)混凝土采用商品混凝土,用混凝土运输车运到现场,每区采用2台混凝土输送泵送筑。 (2)混凝土浇筑时应采用“分区定点、一个坡度、循序推进、一次到顶”的浇筑工艺。
钢筋泵车布料杆的长度,划定浇筑区域,每台泵车负责本区域混凝土浇筑。浇筑时先在一个部位进行,直至达到设计标高,混凝土形成扇形向前流动,然后在其坡面上连续浇筑,循序推进。
这种浇筑方法能较好的适应泵送工艺,使每车混凝土都浇筑在前一车混凝土形成的坡面上,确保每层混凝土之间的浇筑间歇时间不超过规定的时间。同时可解决频繁移动泵管的间题,也便于浇筑完的部位进行覆盖和保温。
(3)混凝土浇筑时在每台泵车的出灰口处配置1~2台振捣器,因为混凝土的坍落度比较大,在1.5米厚的底板内可斜向流淌1米远左右,2台振捣器主要负责下部斜坡流淌处振捣密实,另外2~4台振捣器主要负责顶部混凝土振捣。 (4)由于混凝土坍落度比较大,会在表面钢筋下部产生水分,或在表层钢筋上部的混凝土产生细小裂缝。
为了防止出现这种裂缝,在混凝土初凝前和混凝土预沉后采取二次抹面压实措施。 (5)现场按每浇筑100立方米(或一个台班)制作3组试块,1组压7d强度,1组压28d强度归技术档案资料用;l组作仍14d强度备用。
三、在施工过程中钢筋工程及模板工程的质量控制 根据平面控制网,在防水保护层上放出轴线和基础墙、柱位置线;每跨至少两点用红油漆标注。 顶板混凝土浇筑完成,支设竖向模板前,在板上放出该层平面控制轴线。
待竖向钢筋绑扎完成后,在每层竖向筋上部标出标高控制点。 1、机具准备 1)、剥肋滚压直螺纹机械连接机具由该项技术提供单位配备。
高峰期钢筋施工时至少保证5台钢筋剥肋滚压直螺纹机,其技术参数如下表示: 设备型号 GHG40型 滚丝头型号 40型 可加工范围 16~40 整机质量(kg) 590 2)限位挡铁:对钢。
5.求高性能混凝土论文参考文献,,,
高性能混凝土;耐久性;应用
论文摘 要:近些年来 ,混凝土的应用越来越广泛,混凝土的强度不断提高,某些工程根据自身特点需要,在提出高强度的同时,也提出耐久性和施工和易性的要求。
高性能混凝土是指采用普通原材料、常规施工工艺,通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。具体是:1)拌合料呈高塑或流态、可泵送、不离析,便于浇筑密实;2)在凝结硬化过程中和硬化后的体积稳定,水化热低,不产生微细裂缝,徐变小;3)有很高的抗渗性。其中高工作性是高性能混凝土必须具备的首要条件,即高流动性、高抗分离性、高间隙通过性、高填充性、高密实性、高稳定性;并同时具备低成本的技术经济合理性。高性能混凝土具有很丰富的技术内容,其核心是保证耐久性。
1 混凝土工程耐久性不足的后果
混凝土工程因其工程量浩大,将会因耐久性不足对未来社会造成极为沉重的负担。据美国一项调查显示,美国的混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。美国50万座公路桥梁中20万座已有损坏,平均每年有150-200座桥梁部分或完全坍塌,寿命不足20年;美国共建有混凝土水坝3,000座,平均寿命30年,其中32%的水坝年久失修。
美国对二战前后兴建的混凝土工程,在使用30-50年后进行加固维修所投入的费用,约占建设总投资的40%-50%以上。中国50-60年代所建设的混凝土工程已使用40余年,如果我国混凝土工程的平均寿命按30-50年计,在今后的10-30年内,为了维修建国以来所建基础设施的费用,将是极其巨大的。
目前,我国的基础设施建设工程规模宏大,每年高达2万亿元人民币以上,约30-50年后,这些工程也将进入维修期,所需的维修费或重建费将更为巨大。作为21世纪的高性能混凝土,更要从提高混凝土耐久性入手,以降低巨额的维修和重建费用。
2 影响混凝土耐久性的主要因素
一般混凝土工程的使用年限约为50-100年,不少工程在使用10-20年后,有的甚至使用9年以后,即需要维修。用普通水泥混凝土所完成的工程不能满足耐久性(超耐久)要求的根本原因,在于混凝土本身的内部结构。
首先,为满足混凝土施工工作性要求,即用水量大、水灰比高,因而导致混凝土的孔隙率很高,约占水泥石总体积的25%-40%,特别是其中毛细孔占相当大部分,毛细孔是水分、各种侵蚀介质、氧气、二氧化碳及其它有害物质进入混凝土内部的通道,引起混凝土耐久性的不足。
其次,水泥石中的水化物稳定性不足。水泥水化后的主要化合物是碱度较高的高碱性水化矽酸钙、水化铝酸钙、水化硫铝酸钙。此外,在水化物中还有数量很大的游离石灰,它的强度极低,稳定性极差,在侵蚀条件下,是首先遭到侵蚀的部分。要大幅度提高混凝土的耐久性,就必须减少或消除这些稳定性低的组分,特别是游离石灰。
3 提高混凝土耐久性的技术途径
如前分析,要提高混凝土的耐久性,必须降低混凝土的孔隙率,特别是毛细管孔隙率,最主要的方法是降低混凝土的拌和用水量。但是如果纯粹的降低用水量,混凝土的工作性将随之降低,又会导致捣实成型工作困难,同样造成混凝土结构不致密,甚至出现蜂窝等宏观缺陷,不但混凝土强度降低,而且混凝土的耐久性也同时降低。目前减少孔隙率的途径往往是掺入高效减水剂。 [来源:论文天下论文网 lunwentianxia.com]
6.急
混凝土的施工裂缝问题 摘要:混凝土裂缝是混凝土的一种常见病和多发病,本文主要分析了混凝土裂缝产生的原因和施工温度的关系,以及应采取的措施。
关键词: 混凝土 温度应力 裂缝 控制 一、混凝土的裂缝 混凝土内出现的裂缝按深度的不同,分为贯穿裂缝、深层裂缝及表面裂缝三种。贯穿裂缝是由混凝土表面裂缝发展为深层裂缝,最终形成贯穿裂缝。
它切断了结构的断面,可能破坏结构的整体性和稳定性,其危害性是较严重的;而深层裂缝部分地切断了结构断面,也有一定危害性;表面裂缝一般危害性较小。但出现裂缝并不是绝对地影响结构安全,它都有一个最大允许值。
处于室内正常环境的一般构件最大裂缝宽度小于0.3mm;处于露天或室内高湿度环境的构件最大裂缝宽度小于0.2mm。 对于地下或半地下结构,混凝土的裂缝主要影响其防水性能。
一般当裂缝宽度在0.1-0.2mm时,虽然早期有轻微渗水,但经过一段时间后,裂缝可以自愈。如超过0.2-0.3mm,则渗漏水量将随着裂缝宽度的增加而迅速加大。
所以,在地下工程中应尽量避免超过0.3mm贯穿全断面的裂缝。如出现这种裂缝,将大大影响结构的使用,必须进行化学灌浆加固处理。
大体积混凝土施工阶段还会产生温度裂缝,一方面是混凝土内部因素:由于内外温差而产生的;另一方面是混凝土的外部因素:结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗压强度较大,但受拉力却很小,所以温度应力一旦超过混凝土能承受的抗拉强度时,即会出现裂缝。这种裂缝的宽度在允许限值内,一般不会影响结构的强度,但却对结构的耐久性有所影响,因此必须予以重视和加以控制。
二、产生裂缝的主要原因分析 1.水泥水化热 水泥在水化过程中要释放出一定的热量,特别是大体积混凝土结构断面较厚,表面系数相对较小,所以水泥发生的热量聚集在结构内部不易散失。这样混凝土内部的水化热无法及时散发出去,以至于越积越高,使内外温差增大。
单位时间混凝土释放的水泥水化热,与混凝土单位体积中水泥用量和水泥品种有关,并随混凝土的龄期而增长。由于混凝土结构表面可以自然散热,实际上内部的最高温度,多数发生在浇筑后的最初3-5天。
2.外界气温变化 混凝土在施工阶段,它的浇筑温度随着外界气温变化而变化。特别是气温骤降,会大大增加内外层混凝土温差,这对混凝土是极为不利的。
温度应力是由于温差引起温度变形造成的;温差愈大,温度应力也愈大。同时,在高温条件下,混凝土不易散热,混凝土内部的最高温度一般可达60-65℃,并且有较长的延续时间。
因此,应采取温度控制措施,防止混凝土内外温差引起的温度应力。 3.混凝土的收缩 混凝土中约20℅的水分是水泥硬化所必须的,而约80℅的水分要蒸发。
多余水分的蒸发会引起混凝土体积的收缩。混凝土收缩的主要原因是内部水蒸发引起混凝土收缩。
如果混凝土收缩后,再处于水饱和状态,还可以恢复膨胀并几乎达到原有的体积。干湿交替会引起混凝土体积的交替变化,这对混凝土是很不利的。
影响混凝土收缩,主要是水泥品种、混凝土配合比、外加剂和掺合料的品种以及施工工艺(特别是养护条件)等。 三、混凝土材料要求 混凝土所选用的原材料应注意以下几点: 1.粗骨料宜采用连续级配,细骨料宜采用中砂。
外加剂宜采用缓凝剂、减水剂;掺合料宜采用粉煤灰、矿渣粉等。混凝土在保证混凝土强度及坍落度要求的前提下,应提高掺合料及骨料的含量,以降低单方混凝土的水泥用量 2.水泥应尽量选用水化热低、凝结时间长的水泥,优先采用中热硅酸盐水泥、低热矿渣硅酸盐水泥、大坝水泥、矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥等。
但是,水化热低的矿渣水泥的析水性比其它水泥大,在浇筑层表面有大量水析出。这种泌水现象,不仅影响施工速度,同时影响施工质量。
因析出的水聚集在上下两浇筑层表面间,使混凝土水灰比改变,而在掏水时又带走了一些砂浆,这样便形成了一层含水量多的夹层,破坏了混凝土的粘结力和整体性。混凝土泌水性的大小与用水量有关,用水量多,泌水性大;且与温度高低有关,水完全析出的时间随温度的提高而缩短;此外,还与水泥的成分和细度有关。
所以,在选用矿渣水泥时应尽量选择泌水性的品种,并应在混凝土中掺入减水剂,以降低用水量。在施工中,应及时排出析水或拌制一些干硬性混凝土均匀浇筑在析水处,用振捣器振实后,再继续浇筑上一层混凝土。
四、混凝土的浇筑 浇筑方案除应满足每一处混凝土在初凝以前就被上一层新混凝土覆盖并捣实完毕外,还应考虑结构大小、钢筋疏密、预埋管道和地脚螺栓的留设、混凝土供应情况以及水化热等因素的影响,常采用的方法有以下几种: 1.全面分层 即在第一层全面浇筑全部浇筑完毕后,再回头浇筑第二层,此时应使第一层混凝土还未初凝,如此逐层连续浇筑,直至完工为止。采用这种方案,适用于结构的平面尺寸一般不宜太大,施工时从短边开始,沿长边推进比较合适。
必要时可分成两段,从中间向两端或从两端向中间同时进行浇筑。 2.分段分层 混凝土浇。
7.求论文一篇,关于大一"土木工程概论"这门课程的,3000字+.格式正
关于土木工程的初步认识 摘要:土木工程作为最古老的工程之一,既有着悠久的发展史,又有着美好的未来。
材料作为土木工程的物质基础,在工程建设中有着举足轻重的作用。其中,最主要的就是钢筋混凝土了。
而和衣食住行之首“住”关系最密切的就是房屋工程。 关键词:发展史 材料 混凝土结构 房屋 展望 土木工程的发展史经历了古代、近代和现代三个阶段。
古代的土木工程的历史跨度很长,它大致从旧石器时代(约公元5000年起)到17世纪中叶。当时的各种设施主要依靠经验,根本没有什么设计理论可言。
所用的材料也是十分简单的自然原料。如石块、草筋、土抷等。
到了公元前一千年左右才开始采用烧制的砖。并且,这一时期的工具也是很简单。
尽管如此,我们的老祖宗还是给我们留下了许多有历史价值的建筑,甚至有些工程从现代的角度来看也是非常伟大的、难以现象的。 在西方,最著名的有埃及的金字塔,建于公元前2700年到公元前2600年。
其中以古王国第四王朝法老胡夫的金字塔最大。该塔塔基是正方形,每边长230.5米,高约146米。
用230余万巨石砌成。塔内有甬道、石阶、墓室等。
又如希腊的帕特农神庙,古罗马斗兽场等都是令人神往的。 在中国,最著名的当数万里长城。
它东起山海关、四至嘉峪关。全长5000余公里。
又如公元590年到608年在河北赵县建成的赵州桥。它为单孔圆弧弓型石拱桥。
全长50.82米,桥面宽10米。单孔跨度37.02米,矢高7.23米。
用28条并列的石条拱砌成,拱肩上有4 个小拱。既可减轻桥自重,又便于排泄洪水,且显得美观。
经千余年后尚能正常使用,确实为世界石拱桥的杰作。 近代的土木工程的时间跨度为17世纪中叶到第二次世界大战前后,历时300余年。
在这一时期,土木工程逐渐形成一门独立学科。与古代的土木工程相比,它有了自己新的特点和提高。
首先,有力学和结构理论作为指导。如1683年意大利学者伽利略发表了“关于两门新科学的对话”。
1687年牛顿总结出力学三大定理。1852年法国的纳维建立了土木工程中结构设计的容许应力法。
其次,砖、瓦、木、石等建筑材料得到日益广泛的使用,混凝土、钢材、钢筋混凝土以及早期的预应力混凝土得到发展。如1824年波特兰水泥的发明。
1867年钢筋混凝土开始应用于土木工程史上。1859年火炉炼钢法的成功使得钢材得以大量生产并应用于房屋、桥梁的建筑上。
最后,施工技术进步很大,建造规模日益扩大,建造速度大大加快。 现代的土木工程为20世纪中叶第二次世界大战结束后至今的土木工程。
二战以后,许多国家经济起飞,现代科学技术迅速发展,从而为土木工程的进步发展提供了强大的物质基础和技术手段。他们具有以下特点:土木工程功能化;城市建设立体化;交通运输高速化。
由于社会发展出现了以上3方面的要求,必然使得构成土木工程的3 个要素:材料、施工和理论也要出有新的发展趋势,即建筑材料的轻质高强化,施工过程的工业化、装配化,设计理论的精确化、科学化。 材料是指应用于土木工程建设中的无机材料,有机材料和复合材料的总称。
材料作为土木工程的三大要素之首在建设工程中有着举足轻重的地位:首先,土木工程材料是建设工程的物质基础。其次,土木工程材料与建筑结构和施工之间存在着相互促进、相互依赖的密切关系。
另外,建筑物的功能和使用寿命在很大程度上取决于土木工程材料的性能。再着,建设工程的质量在很大程度上取决于材料的质量。
最后,建筑物的可靠度评价在很大程度上依存于材料可靠度的评价。材料的发展既标志着人类文明的进步,也标志着土木工程建设事业的进步。
混凝土结构包括素混凝土结构、钢筋混凝土结构、预应力混凝土结构和各种其它形式的加筋混凝土结构。素混凝土结构常用于路面和一些非承重结构。
预应力混凝土结构是结构或构件中配置了预应力钢筋加预应力的结构。在大多数情况下,混凝土结构是由钢筋和混凝土组成的钢筋混凝土结构。
钢筋混凝土结构凭着其强度高、耐久性好、可模性好、整体性好、易于就地取材等特点,在土木工程中得到了广泛的应用。房屋建筑方面:我国20世纪90年代建成的广州国际大厦(高200米,地上63层,地下2层)、1990年建成于美国芝加哥的威可德赖夫大楼(高296米,63层)、德国的密思垛大厦(高256米,70层)香港中心大厦(高374米,78层)等采用了混凝土结构。
桥梁方工程面:香港的青马大桥,跨度1377米。桥体为悬索结构,其中支撑悬索的两端立塔高202米,是混凝土结构。
又如上海杨浦大桥,主跨602米,为斜拉桥其桥塔和桥面均为混凝土结构。水利及其他工程方面:我国的龙羊峡水电站拦河大坝也为混凝土结构重力坝,坝高178米,坝顶宽15米,坝底宽80米,坝长393.34米。
是我国目前以建坝中最高的。又如长江葛洲坝水利枢纽工程,发电能力271.5万千瓦,库容量15.8亿立方米,整个工程混凝土用量达983万立方米。
房屋工程是兴建房屋的规划,勘测,设计,施工的总称。目的是为了人类生产和生活提供场所。
说到房屋,我们首要解决的是它的“使用性”,即要有舒适的环境、宽敞的空间、合理的布局、坚。
8.跪求工民建3000字论文一份
工民建及水工建筑混凝土施工的质量控制
摘要:如何控制好混凝土工程的施工质量?首先控制好原材料的质量。其次科学配制混凝土是保证质量的先决条件。三、抓好工地试验室的工作。四、混凝土试件合格,结构物混凝土不一定全部合格。五、和易性是决定混凝土质量的主要因素。六、混凝土浇筑振捣过程是混凝土质量的主要环节。最后强调,要想保证混凝土质量,人的质量意识也是很重要的;同时设计单位、监理单位、施工单位共同努力才能保证混凝土的质量。
关键词:工民建 水工建筑 混凝土 施工 质量控制
工民建中的民用住宅、办公楼(梁、板、拄、基础),水工建筑中的厂房(基础、梁、板、柱)。大坝、隧洞衬砌、渡槽、、桥梁等工程建筑物的结构安全和防渗等绝大多数由混凝土和钢筋混凝土承担,因此混凝土的质量在工程建筑物中显得尤其重要。混凝土施工的工艺水平、施工队伍的素质、原材料的质量等因素给混凝土施工的质量控制带来一定困难。
本人参考资料及结合在小浪底工程混凝土施工的质量控制经验,就如何搞好混凝土的质量控制论述如下:
一、原材料的质量控制:
原材料的质量及其波动,对混凝土质量及施工工艺有很大影响。如水泥强度的波动,将直接影响混凝土的强度;各级石子超逊径颗粒含量的变化,导致混凝土级配的改变,并将影响新拌混凝土的和易性,骨料含水量的变化,对混凝土的水灰比影响极大。为了保证混凝土的质量,在生产过程中,一定要对混凝土的原材料进行质量检验,全部符合技术性能指标方可应用。骨料中含有害物质,超过规范规定的范围内,则会妨碍水泥水化,降低混凝土的强度,削弱骨料与水泥石的粘结,能与水泥的水化产物进行化学反应,并产生有害的膨胀的物质。如果粘土、淤泥在砂中超过3%,碎石、卵石中超过2%,则这些极细粒材料在集料表面形成包裹层,妨碍集料与水泥石的粘结。它们或者以松散的颗粒出现,大大地增加了需水量。如使用有机杂质的沼泽水,海水等拌制混凝土,则会在混凝土表面形成盐霜。对混凝土集料来说,影响配合比组成变异而导致混凝土强度过大波动的主要原因是含水率,含泥量的变化和石子含粉量的影响。在混凝土生产过程中,对原材料的质量控制,除经常性的检测外,还要求质量控制人员随时掌握其含量的变化规律,并拟定相应的对策措施。如砂石的含泥量超出标准要求时,及时反馈给生产部门,及时筛选并采取能保证混凝土的其它有效措施。砂子含水率,通过干炒法,及时根据测定的含水率来调整混凝土配合比中的实际用水量和集料用量。对于相同标号之间水泥活性的变异,是通过胶砂强度试验的快速测定,根据水泥活性结果予以调整混凝土的配合比。水泥、砂、石子各性能指标必需达到规范要求。