1.蜗杆设计(论文)
第一章 绪论 1-1 减速器在国内外的状况 1..1 国内的发展概况 国内的减速器多以齿轮传动,蜗杆传动为主,但普遍存在着功率与重量比 小,或者传动比大而机械效率过低的问题.另外,材料品质和工艺水平上还有许 多弱点.由于在传动的理论上,工艺水平和材料品质方面没有突破,因此,没能 从根本上解决传递功率大,传动比大,体积小,重量轻,机械效率高等这些基本 要求. 2.1.1 国外发展概况 国外的减速器,以德国,丹麦和日本处于领先地位,特别在材料和制造工艺 方面占据优势,减速器工作可靠性好,使用寿命长.但其传动形式仍以定轴齿轮 传动为主,体积和重量问题,也未解决好.当今的减速器是向着大功率,大传动 比,小体积,高机械效率以及使用寿命长的方向发展. 1-2 课题研究的内容及拟采取的技术,方法 本设计是蜗轮蜗杆减速器的设计.设计主要针对执行机构的运动展开.为了 达到要求的运动精度和生产率,必须要求传动系统具有一定的传动精度并且各传 动元件之间应满足一定的关系,以实现各零部件的协调动作.该设计均采用新国 标,运用模块化设计,设计内容包括传动件的设计,执行机构的设计及设备零部 件等的设计. 第二章 传动装置总体设计 2-1 选择电动机 2.1.1 选择电动机类型 按已知工作要求和条件选用 Y 系列一般用途的全封闭自扇冷鼠笼型三相异 步电动机. 2.1.2 选择电动机容量 工作机所需功率 = 式中 =1.8 , =0.65 .查文献[2]表 10.7,得片式关节链 =0.95,滚动轴承 =0.99.取 = =0.95 0.99=0.94,代入上式得 = = =1.24 从电动机到工作机输送链间的总效率 为 式中,查文献[2]表 10.7,得 联轴器效率 滚动轴承效率 双头蜗杆效率 滚子链效率 则 =0.98 =0.99 =0.8 =0.96 =0.98 0.99 0.80 0.96=0.745 故电动机的输出功率 = = =1.67 因载荷平稳,电动机额定功率 只需略大于 即可.查文献[2]中 Y 系列电动 机技术数据表选电动机的额定功率 为 2.2 . 2.1.3 确定电动机转速 运输机链轮工作转速为 = = =24.11 r/min 查文献[2]表 10.6 得,单级蜗杆传动减速机传动比范围 11=10~40,链传动比 12 6,取范围 12=2~4,则总传动比范围为 =10 2~40 4=20~160.可见电动机转速可 选范围为 =(20~160) 24.11=(482.2~3857.6)r/min 符合这一范围的同步转速有 750r/min,1000r/min,1500r/min,3000r/min 四种 查文献[2]表 19.1 对应于额定功率 为 2.2KW 的电动机型号分别取 Y132S-8 . , 型,Y112M-6 型,Y100L-4 型和 Y90L-2 型.将以上四种型号电动机有关技术数据 及相应算得的总传动比列于表 2-1. 表 2-1 方案号 电动机型号 额定功率 (KW) 同步转速 (r/min) 满载转速 (r/min) 总传动比 1 Y132S-8 2.2 750 710 29.45 2 Y112M-6 2.2 1000 940 38.99 3 Y100L-4 2.2 1500 1420 58.90 4 Y90L-2 2.2 3000 2840 117.79 通过对四种方案比较可以看出:方案 3 选用的电动机转速较高,质量轻,价 格低,与传动装置配合结构紧凑,总传动比为 58.90,对整个输送机而言不算大. 故选方案 3 较合理. Y100L-4 型三相异步电动机的额定功率为 =2.2KW,满载转速 n=1400r/min.由文献[2]表 19.2 查得电动机中心高 H=100 ,轴伸出部分用于装 联轴器轴段的直径和长度分别为 D=28 和 E=60 . 2-2 确定传动装置总传动比和分配传动比 2.2.1 总传动比 = = =58.90 2.2.2 分配传动比 由 = 链 蜗杆,为使链传动的外部尺寸不致过大,初取传动比 链 1 =3,则 蜗杆 1 = = =19.63 取 蜗杆=20,则 链= = =2.95 2-3 计算传动装置的运动和动力参数 2.3.1 各轴转速 1 轴 2 轴 3 轴 n1=nm=1420r/min n2= n3= =1420/20=71 r/min =71/2.95=24.11 r/min 2.3.2 各轴的输入功率 1 轴 2 轴 3 轴 2.3.3 各轴的输入转矩 电机轴 1 轴 2 轴 3 轴 T0=9550 =9550 1.67/1420=11.23 T1=9550 =9550 1.63/1420=10.96 T2=9550 =9550 1.31/71=176.20 T3=9550 =9550 1.24/24.11=491.17 p1=p0 1=1.67 0.98=1.64 p2=p1 =1.63 .080=1.31 p3=p2 =1.31 0.99 0.96=1.24 将以上算得的运动和动力参数列于表 2-2. 表 2-2 轴名 传动比 i 效率 电机轴 1.67 11.23 1420 1 0.98 1 轴 1.63 10.96 1420 20 0.8 2 轴 1.31 176.20 71 2.95 0.95 3 轴 1.24 491.17 24.11 第三章 传动零件的设计 3-1 蜗杆传动设计计算 3.1.1 选择蜗杆传动类型 根据 GB/T 10085-1988 的推存,采用渐开线蜗杆(ZI). 3.1.2 选择材料 蜗杆:根据库存材料的情况,并考虑到蜗杆传动传递的功率不大,速度只是 中等,故蜗杆用 45 钢;因希望效率高些,耐磨性好些,故蜗杆螺旋齿面要求淬 火,硬度为 45~55HRC. 蜗轮:由公式 得 滑动速度 因而蜗轮用铸锡磷青铜 ZCuSn10P1,金属模铸造.为了节约贵重的有色金 属,仅齿圈用青铜制造,而轮芯用灰铸铁 HT100 制造. 3.1.3 按齿面接触疲劳强度进行设计 根据闭式蜗杆传动的设计准则,先按齿面接触疲劳强度进行设计,再校核齿 根弯曲疲劳强度.由文献[1]式(11-12),传动中心距 1.确定作用在涡轮上的转距 =176.20 =176200 2.确定载荷系数 K 因工作载荷较稳定,故取载荷分布不均系数 ;由文献[1]表 11-5 选 取使用系数 ;由转速不高,冲击不大,可取动载荷系数 KV=1.05;则 K= =1.15 1 1.05 1.21 3.确定弹性影响系数 因用铸锡磷青铜蜗轮和钢蜗杆相配,故 =160 4.确定接。
2.蜗杆制造工艺
蜗杆的加工球面包络蜗杆,又称二次平面包络蜗杆,弧面包络蜗杆,直廓环面蜗杆等等。
对于这种蜗杆的加工,主要的采用的原理是:刀具在一定的圆上按照一定的轨迹运行,蜗杆在绕自心的轴线旋转,最后就加工成了一个成品的蜗杆。球面蜗杆在加工的工作中,十分容易的出现如下问题: opticsky.com.cn 1蜗杆的齿形的一边厚,一边薄 2蜗杆的齿形两边厚,中间薄 3蜗杆的齿形的两边薄,中间厚 opticsky.com.cn其实,以上的三种情况的出现,都是不正确的,这三种情况的蜗杆与蜗轮都不能正确的啮合,有时为了蜗轮蜗杆能进行基本“咬合”。
不得不研合,跑和,少者几个小时,多着几天,等将蜗轮蜗杆跑合好后,蜗轮的响应的齿厚已经很薄了,并且,蜗杆的齿形与蜗轮的齿形已经不是原来设计的齿形了。 .cn其实,这种跑合的代价是:1损伤了蜗轮的应有齿厚。
2蜗轮与蜗杆的齿形的失真。3齿形的单边啮合,减少了蜗杆的承载能力近百分之五十。
4蜗轮的齿形根部分出现了台阶,在安装的时候的中心难对正确。 光行天下科技网-他们的具体的啮合缺陷分析如下: a.第一种情况的出现,必然导致蜗杆的实际形成中心的不重合,在正常的啮合中,只有靠近理论齿厚的部分齿形进行啮合。
蜗杆的啮合位置偏向齿厚薄的一端,而齿厚后的一端就必然在啮合的齿形之外,至于能进行啮合的一端,也只限于齿厚合适的部分,齿厚薄的部分,齿形的两边都不接触,这时的蜗轮副的承载能力下降到n。n=总承载能力/参加啮合齿数,并且,参加啮合的齿形角有误差。
即一侧有压力角的接触误差,并且,蜗轮副的间隙很快的就变大了。 b.第二种情况的出现,蜗杆的两边的齿形在经过长期的跑和后,蜗杆的两端的外侧齿形接触,两端的内测齿形不接触,中间的齿形也不接触。
并且,中间的齿形永远的不能接触啮合!在工作中,蜗轮副的接触齿厚很快下降,承载能力只能达到设计能力的百分之五十左右。使用寿命也只能达到设计寿命的百分之三十到百分之五十。
c.第三种情况的出现,实际上也是蜗杆的左右齿形的形成圆心不一所致。这种情况的出现,对于蜗杆的使用寿命和承载能力的影响,与前面的基本一致。
3.求Y3150E工作台蜗杆毕业设计(数控方向)
36 同轴式二级圆柱齿轮减速器的设计
37 托板冲模毕业设计
38 推动架设计
39 椭圆盖注射模设计
40 万能外圆磨床液压传动系统设计
41 五寸软盘盖注射模具设计
42 锡林右轴承座组件工艺及夹具设计
43 心型台灯塑料注塑模具毕业设计
44 机械手设计
45 机械手自动控制系统的PLC实现方法研究
46 汽车制动系统实验台设计
47 数控多工位钻床设计
48 数控车床主轴和转塔刀架毕业设计
49 送布凸轮的设计和制造
50 CA6140车床后托架夹具设计
51 带式输送机毕业设计论文
52 电火花加工论文
53 机床的数控改造及发展趋势
54 机械加工工艺规程毕业论文
55 机械手毕业论文
56 基于ANSYS的齿轮泵有限元分析
57 可编程序控制器在机床数控系统中应用探讨
58 矿石铲运机液压系统设计
59 汽车连杆加工工艺及夹具设计论文
60 数控车床半闭环控制系统设计
61 数控多工位钻床设计
62 数控机床体积定位精度的测量与补偿
63 数控机床维修
64 数控加工工艺与编程
65 塑料注射模设计与制造
66 新型电动执行机构
67 液力传动变速箱设计与仿真论文
68 轴类零件的加工工艺论文
69 中型货车变速器的设计
70 数控钻床横、纵两向进给系统的设计
71 经济型数控车床控制系统设计
72 Y210—2型电动机定子铁芯冲压模具设计
73 双坐标十字滑台设计及控制
Q Q : 1 0 7 0 2 6 5 1 0 1
我们也负责定做,需要的话QQ联系
4.蜗杆是怎么加工的
21.某减速器的斜齿圆柱齿轮的法向模数mn=3mm,齿数z=20,标准压力角αn=20°,分度圆螺旋角β=8°6′34″,变位系数为零,齿宽b=65mm,精度等级为8-8-7GB/T 10095.1-2001,齿厚上、下偏差分别为-0.056mm和-0.152mm。
试确定: ①三项精度的必检指标的公差或极限偏差; ②测量公法线长度时的跨齿数和公法线长度及其上、下偏差; ③齿面的表面粗糙度轮廓幅度参数及其允许值; ④齿轮坯的各项公差或极限偏差(齿顶圆柱面不作为切齿时的找正基准,也不作为测量齿厚的基准)。 22.大量生产某直齿圆柱齿轮,其模数m=3.5mm,齿数z=30,标准压力角α=20°,变位系数为零,齿宽b=50mm,精度等级为7GB/T10095.1-2001,齿厚上、下偏差分别为-0.07mm和-0.14mm。
试确定: ①三项精度的必检指标的公差或极限偏差; ②测量公法线长度时的跨齿数和公称公法线长度及其上、下偏差; ③齿面的表面粗糙度轮廓幅度参数及其允许值; ④齿轮坯的各项公差或极限偏差(齿顶圆柱面不作为切齿时的找正基准,也不作为测量齿厚的基准); ⑤用某种切齿方法生产第一批齿轮时,这批齿轮按上列的必检精度指标进行测量后合格,然后在工艺条件不变的情况下,用这种切齿方法继续生产该齿轮而采用双啮仪测量,其传递运动准确性和传动平衡性的评定指标的名称和公差值。 23.某直齿圆柱齿轮的模数m=3.5mm,齿数z=30,标准压力角α=20°,变位系数为零,精度等级为8GB/T100095.1-2001,齿厚上、下偏差分别为-0.07mm和-0.14mm。
(1)以齿顶圆柱面作为测量弦齿厚的基准,在不计及该圆柱面直径的实际偏差的影响时,试确定:①公称弦齿高he和公称弦齿厚snc的数值,②该圆柱面直径的极限偏差和它对齿轮基准孔轴线的径向圆跳动公差,③弦齿高和弦齿厚在齿轮图上的标主方法; (2)以齿顶圆柱面作为测量弦齿厚的基准,且计及该圆柱面直径的实际偏差的影响,试确定:①该圆柱面直径的极限偏差和它对齿轮基准孔轴线的径向圆跳动公差,②弦齿高和弦齿厚在齿轮图上的标注方法; (3)设齿轮齿顶圆柱面直径的实际尺寸为φ111.92mm,计及该圆柱面直径的实际偏差对齿厚测量结果的影响,则测齿卡尺的垂直卡尺应按什么尺寸调整。 24.某通用减速器中相互啮合的两个直齿圆柱齿轮的模数m=4mm,标准压力角 α=20°,变位系数为零,齿数分别为z1=30和z2=96,齿宽分别为b1=75mm和b2=70mm,传递功率为7kW,基准孔直径分别为d1=φ40mm和d2=φ55mm。
主动齿轮的转速n1=1280r/min。采用油池润滑。
工作时发热引起温度升高,要求最小侧隙jbn min=0.21mm。试确定: ①大、小齿轮的精度等级; ②大、小齿轮的各个必检精度指标的公差或极限偏差; ③大、小齿轮齿厚的极限偏差; ④大、小齿轮的公称公法线长度及相应的跨齿数、极限偏差; ⑤大、小齿轮的齿轮坯公差; ⑥大、小齿轮各个表面的表面粗糙度轮廓幅度参数及其允许值; ⑦画出小齿轮的零件图,并将上述技术要求标注在齿轮图上。
齿轮的结构参看有关图册或手册进行设计。 齿轮轮毂采用光滑孔和普通平键键槽,需要确定光滑孔的公差带代号、键槽宽度和深度的基本尺寸和极限偏差以及键槽中心平面对光滑基准孔轴线的对称度公差。
25.某普通车床主轴箱中相互啮合的两上直齿圆柱齿轮的模数m=2.75mm,标准压力角α=20°,变位系数为零,齿数分别为为z1=26和z2=56,齿宽分别为b1=28mm和b2=24mm,传递功率为5kW,齿轮基准孔直径分别为d1=φ30mm和d2=φ45mm。主动齿轮的转速n1=1650r/min。
齿轮材料为45钢,线膨胀系数α1=11.5*106/℃;箱体材料为铸铁,线膨胀系数α2=10.5*106/℃。齿轮的工作t1=60℃,箱体的工作温度t2=40℃。
采用喷油润滑。试确定: ①大、小齿轮的精度等级; ②大、小齿轮的各个必检精度指标的公差或极限偏差; ③大、小齿轮齿厚的极限偏差; ④大、小齿轮的公称公法线长度及相应的跨齿数、极限偏差; ⑤大、小齿轮的齿轮坯公差; ⑥大、小齿轮各个表面的表面粗糙度轮廓幅度参数及其允许值; ⑦画出小齿轮的零件图,并将上述技术要求标注在齿轮图上。
齿轮的结构参看有关图册或手册进行设计。 齿轮轮毂可以采用光滑孔和普通平键键槽,或采用矩形花键孔。
前者需要确定光滑孔的公差带代号、键槽宽度和深度的基本尺寸和极限偏关以及键槽中心平面对光滑基准孔轴线的对称度公并;后者需要确定内花键的键数与小径、大径、键槽宽度的基本尺寸和公关还代号以及花键位置度公差。 26.某减速器中相互啮拿 两上直齿圆柱齿轮的精度等级为8-8-7GB/T10095.1-2001,模数m=5mm,标准压力角α=20°,齿数分别为为z1=20、z2=100,齿宽分别为b=60mm公称中心距α=300mm,齿轮箱体轴承孔跨距L=120mm,试确定齿轮箱体上支承相互啮合齿轮的两对轴承孔的公共轴线的公共轴线间的相互位置公差: ①中心距极限偏差; ②被测轴线对基准轴线在轴线平面上和在垂直平面上的平行度公差。
27.参看图1-10.1所示的分度和测量装置,利用它按绝对法测量齿轮的齿距偏差。测量时,与被测齿轮1同轴线的分度头2主轴按理论齿距角精确分度定位,测头4置。
5.关于蜗杆的加工方法的请教
普通圆柱蜗杆若用直线切削刃在车床上加工,按刀具安装位置不同,切出的蜗杆又可分为阿基米德蜗杆(ZA)、渐开线蜗杆(ZI)和法向直廓蜗杆(ZN)等。
ZA阿基米德蜗杆 车刀刀刃平面通过蜗杆轴线,车刀切削刃夹角2α=40° 切出的蜗杆,在轴平面上具有直线齿廓,法向剖面齿廓为外凸曲线。而端面上的齿廓曲线为阿基米德螺旋线,故称为阿基米德蜗杆。
这种蜗杆加工和测量都比较方便,故应用广泛。但导程角γ过大时加工困难。
难以用砂轮磨削出精确齿形,故传动精度和传动效率较低。 ZI渐开线蜗杆 车刀切削刃平面与蜗杆的基圆柱相切,被切出的蜗杆在轴平面上具有凸廓曲线,而在垂直于轴线的端面上的齿廓为渐开线,故称为渐开线蜗杆。
这种蜗杆可以磨削(见下附德文原版pdf资料),故传动精度和传动效率较高,适用于成批生产和大功率、高速精密传动。 ZN法向直廓蜗杆 当蜗杆导程角 γ较大时,为了使车刀获得合理的前角和后角,车制时车刀刀刃平面放在蜗杆螺旋线的法平面上,这样切出的蜗杆,在法向剖面上齿廓为直线,故 称为法向直廓蜗杆。
而在垂直于轴线的端面上的齿廓曲线为延伸渐开线,因而又称为延伸渐开线蜗杆。这种蜗杆切削性能较好,有利于加工多头蜗杆,且可用砂轮磨齿,常用于机床的多头精密蜗杆传动。
随着技术和产品要求的进步,需要切削速度进一步提高,车削法产生了瓶颈,于是出现了旋风铣。即用旋转的刀具来提高切削线速度(可达每分钟400米),工件则无须高速旋转。
蜗杆的旋风铣加工方法分两种,内旋风whirling和外旋风milling. 内旋风:工件圆周与刀牙圆周内切(蜗杆在刀盘内部) 精度可达DIN7 Ra0.8 外旋风:工件圆周与刀牙圆周外切(蜗杆在刀盘外部) 精度可达DIN6 Ra0.4。
6.求数控铣加工工艺与编程毕业设计
1 10L真空搅拌机设计
2 8英寸钢管热浸镀锌自动生产线设计
3 卧式钢筋切断机的设计
4 气门摇臂轴支座毕业设计
5 后钢板弹簧吊耳的加工工艺
6 环面蜗轮蜗杆减速器
7 S195柴油机机体三面精镗组合机床总体设计及夹具设计
8 车床主轴箱箱体右侧10-M8螺纹底孔组合钻床设计
9 机油盖注塑模具设计
10 机油冷却器自动装备线压紧工位装备设计
11 5基于AT89C2051单片机的温度控制系统的设计
12 基于普通机床的后托架及夹具设计开发
13 减速器的整体设计
14 搅拌器的设计
15 金属粉末成型液压机PLC设计
16 精密播种机
17 可调速钢筋弯曲机的设计
18 空气压缩机V带校核和噪声处理
19 冲压拉深模设计
20 螺旋管状面筋机总体及坯片导出装置设计
21 落料,拉深,冲孔复合模
22 膜片式离合器的设计
23 内螺纹管接头注塑模具设计
24 内循环式烘干机总体及卸料装置设计
25 全自动洗衣机控制系统的设计
26 生产线上运输升降机的自动化设计
27 实验用减速器的设计
28 手机充电器的模具设计
29 鼠标盖的模具设计
30 双齿减速器设计
31 双铰接剪叉式液压升降台的设计
32 水泥瓦模具设计与制造工艺分析
33 四层楼电梯自动控制系统的设计
34 塑料电话接线盒注射模设计
35 塑料模具设计
36 同轴式二级圆柱齿轮减速器的设计
37 托板冲模毕业设计
38 推动架设计
39 椭圆盖注射模设计
40 万能外圆磨床液压传动系统设计
41 五寸软盘盖注射模具设计
42 锡林右轴承座组件工艺及夹具设计
43 心型台灯塑料注塑模具毕业设计
44 机械手设计
45 机械手自动控制系统的PLC实现方法研究
46 汽车制动系统实验台设计
47 数控多工位钻床设计
48 数控车床主轴和转塔刀架毕业设计
49 送布凸轮的设计和制造
50 CA6140车床后托架夹具设计
51 带式输送机毕业设计论文
52 电火花加工论文
53 机床的数控改造及发展趋势
54 机械加工工艺规程毕业论文
55 机械手毕业论文
56 基于ANSYS的齿轮泵有限元分析
57 可编程序控制器在机床数控系统中应用探讨
58 矿石铲运机液压系统设计
59 汽车连杆加工工艺及夹具设计论文
60 数控车床半闭环控制系统设计
61 数控多工位钻床设计
62 数控机床体积定位精度的测量与补偿
63 数控机床维修
64 数控加工工艺与编程
65 塑料注射模设计与制造
66 新型电动执行机构
67 液力传动变速箱设计与仿真论文
68 轴类零件的加工工艺论文
69 中型货车变速器的设计
70 数控钻床横、纵两向进给系统的设计
71 经济型数控车床控制系统设计
72 Y210—2型电动机定子铁芯冲压模具设计
73 双坐标十字滑台设计及控制
74 注射器盖毕业设计
75 二级减速器的毕业设计
.。。 。。。
具体联系我们
QQ :1 0 7 0 2 6 5 1 0 1
7.蜗杆是怎么加工的
蜗杆的加工的方法很多,根据蜗杆的数量、精度、可分为多种加工方法。
蜗杆的加工工艺。(加工一根场300mm,直径50mm的蜗杆)下料、(按正规定要求坯料要经过锻打处理,为获取良好的金属纤维状)、粗车(要保证同轴度,留2mm的精加工量。)
、热处理调质处理HRC28-32、半精车,各部半精车留0.5mm的精车量,车蜗杆部分及两端退刀槽车至要求,挑蜗杆、粗挑,不论用分层法 切入法等都可(注意在切削过程中不可以让刀具三面吃刀,如果三面吃刀有可能产生扎刀)在中经处测量留量0.3mm,半精挑留量0.05-0.1mm(为精光留好较好的基础),低速精光三面至要求(刀具一定要锋利,刃口粗糙度一定要好,一面一面的光。)精车各部至要求(保证同轴度)。
蜗杆是指具有一个或几个螺旋齿,并且与蜗轮啮合而组成交错轴齿轮副的齿轮。其分度曲面可以是圆柱面,圆锥面或圆环面。
8.普通车床加工蜗杆的方法
蜗杆通常比较长,而且槽比较深,螺距比较大,所以装夹必须用中心顶来中心定位。
1.先加工好整体尺寸。2.调整螺距,并先了解槽宽和槽深。
3.车床转速调到最慢,因为转速是跟行进速度直接关联的,把行进和螺杆的转换手柄转到螺杆位置。4.X向大拖把移到起点,使刀具对准起点位置。
5.运行车床空走测试,熟悉控制退刀逆转。一切准备就绪就可以开始加工了。
Y向进刀不能太多,视你的蜗杆调节切削量。刀具要比槽宽小,槽深到数后调节小拖把来加工到要求的槽宽,并在接近加工数要求的时候用配合件手感测试,以达到最好的配合。
9.求一篇机械加工 毕业论文
弧面蜗杆加工专用数控机床及控制系统设计 论文编号:JX389 包括说明书,设计图纸,论文字数:17894.页数:34 摘 要 本论文介绍的是XKA5032A/C数控立式升降台铣床自动换刀装置(刀库式)的设计。
刀库式的自动换刀装置是由刀库和刀具交换装置(换刀机械手)组成。它是多工序数控机床上应用最广泛的换刀装置,其整过换刀过程比较复杂。
首先把加工过程中需要使用的全部刀具安装在标准的刀柄上,在机床外进行尺寸预调后,按一定的方式装入刀库。换刀时,先在刀库中进行选刀,由机械手从刀库和主轴上取出刀具,然后交换位置,把新刀插入主轴,旧刀放回刀库。
存放刀具的刀库具有较大的容量,其容量为六把刀具,采用盘形结构,安装在机床的左侧立柱上。因为XKA5032A/C数控立式升降台铣床外形及其他性能参数等均与THK6363型自动换刀数控镗铣床相似,所以本机床的自动换刀装置的设计将仿效THK6363型自动换刀数控镗铣床换刀装置,设计成采用轴向放置的鼓盘式刀库形式和回转式双臂机械手组成。
刀具按预定工序的先后顺序插入刀库的刀座中,使用时按顺序转到取刀位置。用过的刀具放回原来的刀座内,也可以按加工顺序放入下一个刀座内。
该法不需要刀具识别装置,驱动控制也比较简单,工作可靠。但刀库中每一把刀具在不同工序中不能重复使用,为了满足加工需要只有增加刀具的数量和刀库的容量,这就降低了刀具和刀库的利用率。
此外,装刀时必须十分谨慎,如果刀具不按顺序装在刀库中,将会产生严重的后果。顺序选刀是在加工之前,将加工零件所需刀具按照工艺要求依次插入刀库的刀套中,顺序不能有差错。
加工时按顺序调刀。适合加工批量较大、工件品种数量较少的中、小型自动换刀装置。
可知数控铣床用4把刀就可完成大多数的铣削加工。所以这个容量为6把刀的刀库,几乎不存在加工过程中需要重复利用刀具的情况,所以刀具的选择方式确定为顺序选择刀具。
两手互相垂直的回转式单臂双手机械手的优点是换刀动作可靠,换好时间短,缺点是刀柄精度要求高,结构复杂,联机调整的相关精度要求高,机械手离加工区较近。一般来说,这种机械手用于刀库刀座轴线与机床主轴轴线垂直,刀库为径向存取刀具形式的自动换刀装置,因此,在XKA5032A/C数控立式升降铣床的自动换刀装置中可采用这种机械手形式。
关键词:数控铣床;自动换刀装置;刀库;换刀机械手 目 录 摘要………………………………………………………… 1前言…………………………………………………………………………。. 2第一章 绪论……………………………………………………………………31.1数控机床的知识………………………………………………………… 3第二章 毛坯的设计 ……………………………………………………………42.1 确定零件的生产类型和生产纲领 ……………………………………42.2.1 毛坯的种类 ……………………………………………………42.2.2 毛坯种类的选择 ………………………………………………42.2.3毛坯的形状与尺寸的选择 ……………………………………4 第三章 零件工艺规程的设计 ………………………………………………63.1 定位基准的的选择 ……………………………………………………63.1.1 精基准的选择 ……………………………………………………63.1.2 粗基准的选择 ……………………………………………………63.2 零件表面加工方法的选择 ……………………………………………73.3 加工顺序的安排 ………………………………………………………73.3.1 加工阶段的划分 …………………………………………………73.3.2 工序的合理组合 …………………………………………………73.3.3 加工顺序的安排 ………………………………………………… 83.4 工艺的制定 ……………………………………………………………93.4.1 工序基准的制定 …………………………………………………93.4.2 确定工序尺寸的方法 ……………………………………………93.4.3 加工余量的确定 …………………………………………………103.4.4 机床的选择 ………………………………………………………103.4.5 工艺装备的选择 ………………………………………………103.4.6 切削用量的选择 ………………………………………………10 第3章 刀库的设计………………………………………………………………113.1 确定刀库容量…………………………………………………………… 113.2 确定刀库形式…………………………………………………………… 113.3 刀库结构设计…………………………………………………………… 113.4 初估刀库驱动转距及选定电机………………………………………… 133.4.1初选电动机与降速传动装置……………………………………… 133.4.2初估刀库驱动转距……………………………………………………133.5刀库转位机构的普通圆柱蜗杆传动的设计………………………………133.6刀库驱动转矩的校核………………………………………………………173.7花键联接的强度计算………………………………。
转载请注明出处众文网 » 蜗杆的加工工艺毕业论文