1.阈值分割的概述
图像阈值化分割是一种传统的最常用的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。它特别适用于目标和背景占据不同灰度级范围的图像。它不仅可以极大的压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域不具有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。
基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。
常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。
设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:
若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。
2.基于阈值的图像分割方法有哪些
主要是三类
1) 基于点的全局阈值方法;
2) 基于区域的全局阈值方法
3) 局部阈值方法和多阈值方法
1)基于点的全局阈值方法
p-分位数法
1962年Doyle提出的p-分位数法是最古老的一种阈值选取方法
迭代方法选取阈值
初始阈值选取为图像的平均灰度T0,然后用T0将图像的象素点分作两部分,计算两部分各自的平均灰度,小于T0的部分为TA,大于T0的部分为TB,将T1 作为新的全局阈值代替T0,重复以上过程,如此迭代,直至TK 收敛
直方图凹面分析法
最大类间方差法
熵方法
最小误差阈值
矩量保持法
模糊集方法
2) 基于区域的全局阈值方法
二维熵阈值分割方法
简单统计法
直方图变化法
松弛法
3) 局部阈值方法和多阈值方法
局部阈值(动态阈值)
阈值插值法
水线阈值算法
多阈值法 基于小波的多域值方法 基于边界点的递归多域值方法 均衡对比度递归多域值方法
3.阈值分割的应用
阈值分割的优点是计算简单、运算效率较高、速度快。在重视运算效率的应用场合(如用于硬件实现),它得到了广泛应用。目前,图像的阈值分割已被应用于很多的领域,例如,在红外技术应用中,红外无损检测中红外热图像的分割,红外成像跟踪系统中目标的分割;在遥感应用中,合成孔径雷达图像中目标的分割等;在医学应用中,血液细胞图像的分割,磁共振图像的分割;在农业工程应用中,水果品质无损检测过程中水果图像与背景的分割。在工业生产应用中,机器视觉运用于产品质量检测等。
4.matlab彩色图像的阈值分割
阈值分割就是针对灰度图像的,通过抄设定一个阈值可以在分割后达到二值化的效果。对彩色图袭像进行阈值分割,当然也是转成灰度图后进行分割了。
假如你对各个颜色分量分别进行阈值化,我给你试了试
a=imread('a.jpg');
[m,n,d]=size(a);
threshold=90;
for i=1:m
for j=1:n
for k=1:3
if a(i,j,k)>90
a(i,j,k)=255;
else a(i,j,k)=0;
end
end
end
end
a_origin=a;
a(:,:,2)=0;
a(:,:,3)=0;
subplot(121),imshow(a);
subplot(122),imshow(a_origin);
效果知就是,单个颜色分道量的可以阈值分割,但是一起分割就效果不理想了