1.数据分析需要掌握些什么知识?
数据分析所需要掌握的知识:
数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。
而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。
分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。
编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
数据可视化
数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。
对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
2.数据分析需要掌握哪些知识?
一、掌握基础、更新知识。
基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识), 多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。
数据库查询—SQL数据分析师在计算机的层面的技能要求较低,主要是会SQL,因为这里解决一个数据提取的问题。有机会可以去逛逛一些专业的数据论坛,学习一些SQL技巧、新的函数,对你工作效率的提高是很有帮助的。
统计知识与数据挖掘你要掌握基础的、成熟的数据建模方法、数据挖掘方法。例如:多元统计:回归分析、因子分析、离散等,数据挖掘中的:决策树、聚类、关联规则、神经网络等。
但是还是应该关注一些博客、论坛中大家对于最新方法的介绍,或者是对老方法的新运用,不断更新自己知识,才能跟上时代,也许你工作中根本不会用到,但是未来呢?行业知识如果数据不结合具体的行业、业务知识,数据就是一堆数字,不代表任何东西。是冷冰冰,是不会产生任何价值的,数据驱动营销、提高科学决策一切都是空的。
一名数据分析师,一定要对所在行业知识、业务知识有深入的了解。例如:看到某个数据,你首先必须要知道,这个数据的统计口径是什么?是如何取出来的?这个数据在这个行业, 在相应的业务是在哪个环节是产生的?数值的代表业务发生了什么(背景是什么)?对于A部门来说,本月新会员有10万,10万好还是不好呢?先问问上面的这个问题:对于A部门,1、新会员的统计口径是什么。
第一次在使用A部门的产品的会员?还是在站在公司角度上说,第一次在公司发展业务接触的会员?2、是如何统计出来的。A:时间;是通过创建时间,还是业务完成时间。
B:业务场景。是只要与业务发接触,例如下了单,还是要业务完成后,到成功支付。
3、这个数据是在哪个环节统计出来。在注册环节,在下单环节,在成功支付环节。
4、这个数据代表着什么。10万高吗?与历史相同比较?是否做了营销活动?这个行业处理行业生命同期哪个阶段?在前面二点,更多要求你能按业务逻辑,来进行数据的提取(更多是写SQL代码从数据库取出数据)。
后面二点,更重要是对业务了解,更行业知识了解,你才能进行相应的数据解读,才能让数据产生真正的价值,不是吗?对于新进入数据行业或者刚进入数据行业的朋友来说:行业知识都重要,也许你看到很多的数据行业的同仁,在微博或者写文章说,数据分析思想、行业知识、业务知识很重要。我非常同意。
因为作为数据分析师,在发表任何观点的时候,都不要忘记你居于的背景是什么?但大家一定不要忘记了一些基本的技术,不要把基础去忘记了,如果一名数据分析师不会写SQL,那麻烦就大了。哈哈。
你只有把数据先取对了,才能正确的分析,否则一切都是错误了,甚至会导致致命的结论。
新同学,还是好好花时间把基础技能学好。因为基础技能你可以在短期内快速提高,但是在行业、业务知识的是一点一滴的积累起来的,有时候是急不来的,这更需要花时间慢慢去沉淀下来。
不要过于追求很高级、高深的统计方法,我提倡有空还是要多去学习基本的统计学知识,从而提高工作效率,达到事半功倍。以我经验来说,我负责任告诉新进的同学,永远不要忘记基本知识、基本技能的学习。
二、要有三心。 1、细心。
2、耐心。 3、静心。
数据分析师其实是一个细活,特别是在前文提到的例子中的前面二点。而且在数据分析过程中,是一个不断循环迭代的过程,所以一定在耐心,不怕麻烦,能静下心来不断去修改自己的分析思路。
三、形成自己结构化的思维。数据分析师一定要严谨。
而严谨一定要很强的结构化思维,如何提高结构化思维,也许只需要工作队中不断的实践。但是我推荐你用mindmanagement,首先把你的整个思路整理出来,然后根据分析不断深入、得到的信息不断增加的情况下去完善你的结构,慢慢你会形成一套自己的思想。
当然有空的时候去看看《麦肯锡思维》、结构化逻辑思维训练的书也不错。在我以为多看看你身边更资深同事的报告,多问问他们是怎么去考虑这个问题的,别人的思想是怎么样的?他是怎么构建整个分析体系的。
四、业务、行业、商业知识。 当你掌握好前面的基本知识和一些技巧性东西的时候,你应该在业务、行业、商业知识的学习与积累上了。
这个放在最后,不是不重要,而且非常重要,如果前面三点是决定你能否进入这个行业,那么这则是你进入这个行业后,能否成功的最根本的因素。 数据与具体行业知识的关系,比作池塘中鱼与水的关系一点都不过分,数据(鱼)离开了行业、业务背景(水)是死的,是不可能是“活”。
而没有“鱼”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。 如何提高业务知识,特别是没有相关背景的同学。
很简单,我总结了几点:1、多向业务部门的同事请教,多沟通。多向他们请教,数据分析师与业务部门没有利益冲突,而更向是共生体,所以如果你态度好,相信业务部门的同事也很愿意把他们知道的告诉你。
2、永远不要忘记了google大神,定制一些行业的关键字,每天都先看看定制的邮件。 3、每天有空。
3.写论文有哪些要求
写论文有十个要求。
具体是: (一)论文——题目科学论文都有题目,不能“无题”。论文题目一般20字左右。
题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。
(二)论文——署名科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。
严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。现在往往把参加工作的人全部列上,那就应该以贡献大小依次排列。
论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。
行政领导人一般不署名。 (三)论文——引言 是论文引人入胜之言,很重要,要写好。
一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。
要复习必要的文献、写明问题的发展。文字要简练。
(四)论文——材料和方法 按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志 对论文投稿规定办即可。
(五)论文——实验结果 应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。
只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据和不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。
废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。 (六)论文——讨论 是论文中比较重要,也是比较难写的一部分。
应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。
应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。 论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。
(七)论文——结语或结论 论文的结语应写出明确可靠的结果,写出确凿的结论。论文的文字应简洁,可逐条写出。
不要用“小结”之类含糊其辞的词。 (八)论文——参考义献 这是论文中很重要、也是存在问题较多的一部分。
列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。
(九)论文——致谢 论文的指导者、技术协助者、提供特殊试剂或器材者、经费资助者和提出过重要建议者都属于致谢对象。论文致谢应该是真诚的、实在的,不要庸俗化。
不要泛泛地致谢、不要只谢教授不谢旁人。写论文致谢前应征得被致谢者的同意,不能拉大旗作虎皮。
(十)论文——摘要或提要:以200字左右简要地概括论文全文。常放篇首。
论文摘要需精心撰写,有吸引力。要让读者看了论文摘要就像看到了论文的缩影,或者看了论文摘要就想继续看论文的有关部分。
此外,还应给出几个关键词,关键词应写出真正关键的学术词汇,不要硬凑一般性用词。
转载请注明出处众文网 » 毕业论文数据分析需要做出东西吗(数据分析需要掌握些什么知识?)