1.人工智能现状分析?
人工智能技术刚开始只是在应用方面简进行单的处理,后来发展到可以进行简单的外部沟通,随着对于人工智能技术的不断完善,现代的人工智能已经拥有了独立的思维。
在大时代背景下,人工智能已经走向一个前所未有的阶段,在人们的工作和生活方方面面起到的作用都至关重要。人工智能技术要想更好地发展必然离不开计算机技术的发展,人工智能技术的基石就是计算机技术。
与很多国家相比较而言,我国的计算机技术起步较晚,存在一定的差距,但是由于计算机科学家们的不懈努力,总算有着不错的科研成果,因此未来的人工智能技术必然会大放异彩。
2.人工智能新发展论文
[摘要] 本文认为,计算机科学和人工智能将是21世纪逻辑学发展的主要动力源泉,并且在很大程度上将决定21世纪逻辑学的面貌。
至少在21世纪早期,逻辑学将重点关注下列论题:(1)如何在逻辑中处理常识推理的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的可错的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。 [关键词] 人工智能,常识推理,归纳逻辑,广义内涵逻辑,认知逻辑,自然语言逻辑 现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。
当时的数学家们试图即从少数公理根据明确给出的演绎规则推导出其他的数学定理,从而把整个数学构造成为一个严格的演绎大厦,然后用某种程序和方法一劳永逸地证明数学体系的可靠性。为此需要发明和锻造严格、精确、适用的逻辑工具。
这是现代逻辑诞生的主要动力。由此造成的后果就是20世纪逻辑研究的严重数学化,其表现在于:一是逻辑专注于在数学的形式化过程中提出的问题;二是逻辑采纳了数学的方法论,从事逻辑研究就意味着象数学那样用严格的形式证明去解决问题。
由此发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。 本文所要探讨的问题是:21世纪逻辑发展的主要动力将来自何处?大致说来将如何发展?我个人的看法是:计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。
由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理(这一点在20世纪基本上已经做到了,如用计算机去进行高难度和高强度的数学证明,“深蓝”通过高速、大量的计算去与世界冠军下棋),而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素,例如选择性地搜集相关的经验证据,在不充分信息的基础上作出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,……由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。
实际上,在20世纪中后期,就已经开始了现代逻辑与人工智能(记为AI)之间的相互融合和渗透。例如,哲学逻辑所研究的许多课题在理论计算机和人工智能中具有重要的应用价值。
AI从认知心理学、社会科学以及决策科学中获得了许多资源,但逻辑(包括哲学逻辑)在AI中发挥了特别突出的作用。某些原因促使哲学逻辑家去发展关于非数学推理的理论;基于几乎同样的理由,AI研究者也在进行类似的探索,这两方面的研究正在相互接近、相互借鉴,甚至在逐渐融合在一起。
例如,AI特别关心下述课题: ·效率和资源有限的推理; ·感知; ·做计划和计划再认; ·关于他人的知识和信念的推理; ·各认知主体之间相互的知识; ·自然语言理解; ·知识表示; ·常识的精确处理; ·对不确定性的处理,容错推理; ·关于时间和因果性的推理; ·解释或说明;21世纪的逻辑学也应该关注这些问题,并对之进行研究。为了做到这一点,逻辑学家们有必要熟悉AI的要求及其相关进展,使其研究成果在AI中具有可应用性. 我认为,至少是21世纪早期,逻辑学将会重点关注下述几个领域,并且有可能在这些领域出现具有重大意义的成果:(1)如何在逻辑中处理常识推理中的弗协调、非单调和容错性因素?(2)如何使机器人具有人的创造性智能,如从经验证据中建立用于指导以后行动的归纳判断?(3)如何进行知识表示和知识推理,特别是基于已有的知识库以及各认知主体相互之间的知识而进行的推理?(4)如何结合各种语境因素进行自然语言理解和推理,使智能机器人能够用人的自然语言与人进行成功的交际?等等。
3.如何看待人工智能的发展现状和未来可能
展望前沿技术探索,未来三到五年最有可能出现突破的就是半监督的学习方法。现在深度卷积神经网络很好,但是它有缺点,即依赖于带标签的完备大数据,没有大数据喂食就不可能达到人类水平,但是要获得完备的大数据,需要付出的资源代价太大,很多应用场景甚至得不到,比如把全世界的火车照片都搜集起来,这是不可能的事。我们希望能够做一些小数据、小样本的半监督学习,训练数据不大,但是还能够达到人类水平。
我们做过很多实验,人为地去掉一半甚至去掉1/4的标签数据去训练深度卷积神经网络,希望网络能够具有举一反三的能力,通过小样本或小数据的学习同样能够达到人类水平。这方面的研究不管是利用生成式对抗网络,还是与传统统计机器学习方法相结合,或者是与认知计算方法的结合,证明难度都挺大。比如我们看到了土狗的照片,从来没见过藏獒、宠物狗,但通过举一反三就能够识别出来。这靠什么?靠推理。人类不完全是基于特征提取,还靠知识推理获得更强的泛化能力。而现在的深度卷积神经网络是靠多级多层的特征提取,如果特征提取不好,识别结果就不好,就达不到人类水平。总之,特征提取要好就必须要有完备的大数据。但不管怎样,相信具有“特征提取+知识推理”的半监督或者无监督的深度卷积神经网络三到五年会有突破,而且还是基于端到端学习的,其中也会融入先验知识或模型。相对而言,通用人工智能的突破可能需要的时间更长,三到五年能不能突破还是未知,但是意义非常重大。
在半监督、无监督深度学习方法突破之后,很多行业应用包括人工智能场景研发都会快速推进。实际应用时我们一般都通过数据迭代、算法迭代向前推进。从这个角度来说,AlphaGo中体现的深度强化学习代表着更大的希望。因为它也是基于深度卷积神经网络的,包括以前用的13层网络,现在用的40层卷积神经网,替代了以前的浅层全连接网络,带来的性能提升是很显著的。
为什么深度强化学习更有意义?首先它有决策能力,决策属于认知,这已经不仅仅是感知智能了。其次AlphaGo依赖的仅仅是小数据的监督学习。3000万的6-9段人类职业棋手的棋局,对人类来说已经是大数据了,但对围棋本身的搜索空间来讲则是一个小数据。不管柯洁还是聂卫平,都无法记住3000万个棋局,但19x19的棋盘格上,因每个交叉点存在黑子、白子或无子三种情况,其组合数或搜索空间之巨大,超过了全宇宙的粒子数。对具有如此复杂度的棋局变化,人类的3000万个已知棋局真的就是一个小数据,AlphaGo首先通过深度监督学习,学习人类的3000万个棋局作为基础,相当于站在巨人的肩膀上,然后再利用深度强化学习,通过自我对弈、左右互搏搜索更大的棋局空间,是人类3000万棋局之外的棋局空间,这就使AlphaGo 2.0下出了很多我们从未见过的棋谱或者棋局。
总的来说,深度强化学习有两大好处,它寻找最优策略函数,给出的是决策,跟认知联系起来。第二,它不依赖于大数据。这就是前面说的小数据半监督学习方法。因为在认知层面上进行探索,而且不完全依赖于大数据,因此意义重大,魅力无穷。相信深度强化学习非常有潜力继续向前发展,将大大扩展其垂直应用领域。但是它本身并不是一个通用人工智能。AlphaGo只能下围棋不能同时下中国象棋、国际象棋,因此还只是专注于一个“点”上面的,仍属于弱人工智能。
实现通用人工智能,把垂直细分领域变宽或者实现多任务而不是单任务学习,对深度神经网络而言,沿什么样的技术途径往前走现在还未知,但是肯定要与基于学习的符号主义结合起来。通用人工智能现在没有找到很好的线索往前走,原因一是因为神经网络本身是黑箱式的,内部表达不可解析,二是因为传统的卷积神经网络本身不能完成多任务学习。可以考虑跟知识图谱、知识推理等符号主义的方法结合,但必须是在新的起点上,即在已有大数据感知智能的基础上,利用更高粒度的自主学习而非以往的规则设计来进行。另外从神经科学的角度去做也是可能的途径之一。
4.浅谈我们身边的人工智能和大数据为我们生活带来的便利?
身边的人工智能和大数据为我们生活带来的便利如下:
1、预测购买行为帮助商家控制生产和盈利,企业可以对于海量数据的挖掘和运用,通过,预示着新一波生产率增长和消费者盈余浪潮的到来。
2、无人汽车在自动驾驶这种生死攸关的技术上,「大数据」和「人工智能」带来的不仅仅是方便快捷,更多的是安全。
3、3D打印对每个人进行量身定制,机器进行智能取模,并打印出实物。幻想一下你的房子是打印出来的,你的车子是打印的。
4、促进农业革命,在美国,只有 2% 的人是农民,却养活了 3 亿多的国民,靠的就是高度的农业机械化生产。你在坐着喝咖啡看着机器自己工作是不是很爽。
5、调控城市的出行,试想一下行驶数据时时同步进行数据共享,你可以知道你过的路口是否刚好绿灯并且道路是否畅通自动给你分析并为你切换最佳路线。
6、分析用户需求,对用户数据进行分析,从而得出每个用户的后期需求,可以帮助用户节省寻找产品的时间。
5.浅谈人工智能技术在生活科技中的运用技术?
人工智能研究与应用虽取得了不少成果,但离全面推广应用还有很大的距离,还有许多问题有待解决,且需要多学科的研究专家共同合作。
未来人工智能的研究方向主要有:人工智能理论、机器学习模型和理论、不精确知识表示及其推理、常识知识及其推理、人工思维模型、智能人机接口、多智能主体系统、知识发现与知识获取、人工智能应用基础等。 人工智能(Artificial Intelligence), 英文缩写为 AI, 是一门由计算机科学、控制论、信息论、语言学、神经生理学、心理学、数学、哲学等多种学科相互渗透而发展起来的综合性新学科。
自问世以来AI经过波波折折,但终于作为一门边缘新学科得到世界的承认并且日益引起人们的兴趣和关注。不仅许多其他学科开始引入或借用AI技术,而且AI中的专家系统、自然语言处理和图象识别已成为新兴的知识产业的三大突破口。
作为一门学科,人工智能于1956年问世,是由“人工智能之父“McCarthy及一批数学家、信息学家、心理学家、神经生理学家、计算机科学家在Dartmouth大学召开的会议上,首次提出。对人工智能的研究,由于研究角度的不同,形成了不同的研究学派。
这就是:符号主义学派、连接主义学派和行为主义学派。 传统人工智能是符号主义,它以Newell和Simon提出的物理符号系统假设为基础。
物理符号系统是由一组符号实体组成,它们都是物理模式,可在符号结构的实体中作为组成成分出现,可通过各种操作生成其它符号结构。物理符号系统假设认为:物理符号系统是智能行为的充分和必要条件。
主要工作是“通用问题求解程序“(General Problem Solver, GPS 论文网):通过抽象,将一个现实系统变成一个符号系统,基于此符号系统,使用动态搜索方法求解问题。 连接主义学派是从人的大脑神经系统结构出发,研究非程序的、适应性的、大脑风格的信息处理的本质和能力,研究大量简单的神经元的集团信息处理能力及其动态行为。
人们也称之为神经计算。研究重点是侧重于模拟和实现人的认识过程中的感觉、知觉过程、形象思维、分布式记忆和自学习、自组织过程。
行为主义学派是从行为心理学出发,认为智能只是在与环境的交互作用中表现出来。 人工智能的研究经历了以下几个阶段: 第一阶段:50年代人工智能的兴起和冷落 人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题s求解程序、LISP表处理语言等。
但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
第二阶段:60年代末到70年代,专家系统出现,使人工智能研究出现新高潮 DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议(International Joint Conferences on Artificial Intelligence即IJCAI)。
第三阶段:80年代,随着第五代计算机的研制,人工智能得到了很大发展 日本1982年开始了“第五代计算机研制计划“,即“知识信息处理计算机系统KIPS“,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段:80年代末,神经网络飞速发展 1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段:90年代,人工智能出现新的研究高潮 由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。
另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深入到社会生活的各个领域。
IBM公司“深蓝“电脑击败了人类的世界国际象棋冠军,美国制定了以多Agent系统应用为重要研究内容的信息高速公路计划,基于Agent技术的Softbot(软机器人)在软件领域和网络搜索引擎中得到了充分应用,同时,美国Sandia实验室建立了国际上最庞大的“虚拟现实“实验室,拟通过数据头盔和数据手套实现更友好的人机交互,建立更好的智能用户接口。图像处理和图像识别,声音处理和声音识别取得了较好的发展,IBM公司推出了ViaVoice声音识别软件,以使声音作为重要的信息输入媒体。
国际各大计算机公司又开始将“人工智能“作为其研究内容。人们普遍认为,计算机将会向网络化、智能化、并行化方向发展。
二十一世纪的信息技术领域将会以智能信息处理为中心。 目前人工智能主要研究内容是:分布式人工智能与多智能主体系统、人工思维模型、知识系统(包括专家系统、知识库系统和智能决策系统)、知识发现与数据挖掘(从大量的、不完全的、模糊的、有噪声的数据中挖掘出对我们有用的知识)、遗传与演化计算(通过对生物遗传与进化理论的模拟,。
6.人工智能的利弊论文2000字
随着科学技术和互联网的发展,地球已经变成了一个小小的地球村,人工智能领域也迅速发展,特别是在中国“2025智造”提出后,国内的人工智能领域也掀起一段热潮,BAT等科技巨头纷纷布局人工智能领域,科大讯飞在语音识别方面也取得了不小的突破,影视明星任泉投资人工智能领域。面对发展如此迅速的人工智能,既有利,也有弊。
人工智能发展的利
目前人工智能已经为人类创造出了非常可观的经济效益,人工智能可以代替人类做大量人类不想做、不能做的工作,而且机器犯错误的概率比人低,并且能够持续工作,大大的提升工作效率,节约了大量的成本,未来的人工智能可能还会代替人类工作,代替人类做家务,帮助人类学习,甚至可以照顾老人和小孩,实时监护人类的健康,生病了直接给人来治疗,延长人类的寿命,让人类的生活变得越来越美好。
人工智能发展的弊
科技的发展是一把双刃剑,汽车分发明颠覆了传统的马车行业,人工智能的发展同样也将颠覆许多行业。机器人代替了许多人类的工作将导致大量的人口失业,机器新的学习速度远远快于人类,阿尔法狗战胜李世石引起人们的恐慌,有人说不怕阿尔法狗战胜李世石,怕的是阿尔法够故意输掉一局,如果未来的某一天,机器人变成像电影《机械姬》中有意识的机器人,那么人类随时会变成机器人的奴隶,同时,人工智能面临着技术失控的危险,霍金曾发出警告,人类面临一个不确定的未来,先进的人工智能设备能够独立思考,并适应环境变化,它们未来或将成为导致人类灭亡的终结者!如果真的有一天,人工智能机器人变成了能独立思考,独立的做出准确的判断,一旦有一天人工智能反客为主,到时人工智能对于人类将会是毁灭性的灾难。甚至被人工智能消灭。地球将被人工智能统治。
任何的科学技术的发展最大的威胁就是失去人类的控制,人工智能亦是如此,无论人工智能如何发展,都必须保证始终受人类控制,在不伤害人类的情况下服务于人类。这样人类才会更加容易的接受人工智能。
人工智能改变了人们的生活,我们对人工智能应加以好的利用,同时要避免带来的弊端,人工智能与人类、与社会、与自然和谐相处,这样才能长远的发展。
7.人工智能机器人的发展现状及发展趋势
机器人有三个发展阶段,那么也就是说,我们习惯于把机器人分成三类,一种是第一代机器人,那么也叫示教再现型机器人,它是通过一个计算机,来控制一个多自由度的一个机械,通过示教存储程序和信息,工作时把信息读取出来,然后发出指令,这样的话机器人可以重复的根据人当时示教的结果,再现出这种动作,比方说汽车的点焊机器人,它只要把这个点焊的过程示教完以后,它总是重复这样一种工作,它对于外界的环境没有感知,这个力操作力的大小,这个工件存在不存在,焊的好与坏,它并不知道,那么实际上这种从第一代机器人,也就存在它这种缺陷,因此,在20世纪70年代后期,人们开始研究第二代机器人,叫带感觉的机器人,这种带感觉的机器人是类似人在某种功能的感觉,比如说力觉、触觉、滑觉、视觉、听觉和人进行相类比,有了各种各样的感觉,比方说在机器人抓一个物体的时候,它实际上力的大小能感觉出来,它能够通过视觉,能够去感受和识别它的形状、大小、颜色。
那么第三代机器人,也是我们机器人学中一个理想的所追求的最高级的阶段,叫智能机器人,那么只要告诉它做什么,不用告诉它怎么去做,它就能完成运动,感知思维和人机通讯的这种功能和机能,那么这个目前的发展还是相对的只是在局部有这种智能的概念和含义,但真正完整意义的这种智能机器人实际上并没有存在,而只是随着我们不断的科学技术的发展,智能的概念越来越丰富,它内涵越来越宽。 现在开发的机器人应该是处于第一第二阶段之间。
有兴趣的话可以加 百度hi好友来探讨一下~我也比较喜欢研究这方面的技术。
转载请注明出处众文网 » 毕业论文文献综述人工智能(人工智能现状分析?)