1.求交流自动调压器的毕业设计!急!
首先说明一下我不要钱,只是我往答题框传送图片的技术并掌握,故只能告诉你设计思路。一以一台手动调压器做基础原件,加上一个市售的小型带有一比500减速箱的小电机,要工作电压12V0.5A左右就好。用机械手段把电机的输出轴与调压器连接。 二 为了能用电机自动调整电压。下边一步是按市电网的电压升降变化提取控制因素,按要求电压上升电机执行正转,电压下降电机反转。 三 为了以上这些需要设计弱电伺服系统选一个输入电压220V输出电压18V20W变压器。先把低压整流稳压用7812输出用两个2*2触点的小型继电器交差连接12V电源,交叉连接的效果是A继电器接通电机正转,B继电器接通电机反转。 四 下边的工作是在12V电源处提取交流电压的高低变化,它的变化反映了电源220V升降变化。然后选用电压比较器做开启电机转动起停控制。一般机械调整的自动系统都是阶段调整,比如电源电压降低百分之5或者百分之10才调整一下。如果需要高精度调整需要用大功率器件做电压跟踪稳压控制叙述需要很大片幅这里不做叙述。
如有疑问可在开通视频交流QQ1374243235
2.单相交流电路的实验报告如何写
目标:开发交流传动实验系统,能够对交流传动产品进行包括供电装置(如变压器、高压柜等)在内的主变流器、异步电动机及其控制系统的综合试验。
附图1:交流传动电力机车牵引系统原理图。 系统采用交流牵引电机背靠背的方式取代直流电机作为陪试机,用变流器取代原直流发电机—同步机组,直接向接触网,在达到试验目的的前提下大大减小能源消耗。
附图2:原交流传动试验系统原理电路图。 附图3:能量反馈型交流传动试验系统原理电路图。
系统主要由主电路部分、控制部分和测试部分组成,分别要求完成以下内容: 2、设计内容与要求 1)试验系统主电路的设计和部件选型 ① 主电路结构的设计,基本部件的确定; ② 陪试牵引变压器的选型; ③ 陪试变流器的选型; ④ 陪试交流牵引电机选型; 2)试验系统控制部分的设计 ① 主电路工作原理分析; ② 控制电路工作原理分析; ③ 保护电路工作原理分析; ④ 控制系统的总体结构设计; ⑤ PLC的选型、硬件配置、控制协议的确定; ⑥ PLC程序流程的编写。 3)试验系统测试部分的设计 ① 测试系统的工作原理分析; ② 测试传感器的选型; ③ 工控机、信号调理装置、PCI采集板卡等的选型; ④ 电路监测和保护的设计; ⑤ LABVIEW程序流程的编写。
4)系统设计要求: ① 试验系统主要由10kV电网,单相交流供电的综合试验电源系统,被试变流器,交流牵引电机,陪试变流器,反馈变压器,控制电源,三相AC380V动力电源,测试和控制系统等组成。 ② 根据试验系统总体电路,计算10kV、50Hz电网单相、三相所需的的容量,计算三相电压不平衡度及对三相电网的影响。
③ 单相交流供电的综合试验电源系统参数要求: ? 单相升压变压器(10kV/25kV)实现单相25kV/50Hz电源,容量4000kVA,在输入电压允许变化范围内保证输出电压变化范围17.5~31kV。 ? 牵引变压器的牵引绕组的短路阻抗设计为25%,同时通过配备可调的电抗器来调节支路短路阻抗以实现不同综合试验的需求。
? 电源系统的保护至少应包括:高压警示、电流速断保护、电流过流保护、变压器保护(温升保护、压力保护、瓦斯保护等)等。 ④ 通用陪试变流器参数要求: ? 输出三相对称的电压,输出电压范围0~2200V RMS; ? 输出电流范围0~1300A RMS,输出频率范围0~200Hz; ? 输出的最大功率≥3200kVA。
⑤ 平台负载系统要求: ? 采用交流牵引电机背靠背的方式作为陪试机,通过陪试牵引变流器和牵引变压器直接向接触网反馈能量; ? 被试变流器的最大功率按照2800kW设计,被试异步牵引电动机的最大功率按照1250kW设计; ? 平台电机负载的保护应包括:高压警示、电流速断保护、过流保护、过压保护、电机温升保护、电机超速保护、短路保护、接地保护、缺相保护、陪试变流器保护(过流保护、过压保护、接地保护、超温保护、低温保护、失压保护、水位保护等)、陪试变压器保护(温升保护、压力保护、瓦斯保护等)等。 ⑥ 测试系统的准确度满足:交直流电流、电压基波、有效值的测量准确度不低于±0.5%,转速测量准确度不低于±0.1%或±1r/min,转矩测量准确度不低于±1%,功率测量准确度不低于±1%。
⑦ 其他性能要求: ☆ 可靠性要求:系统能满足长时间、间断稳定运行。 ☆ 安全性:系统应保证人身、设备安全。
☆ 易操作性:系统应提供友好人机界面,操作简单。 ⑧ 系统设计完成后的资料整理。
3.毕业论文:基于单片机的交流异步电动机变频调速系统设计
小型普通交流异步电动机变频调速性能研究摘要:变频器和普通交流异步电机组成的调速系统被广泛使用,但人们还只是根据经验确定电机的最佳变频调速范围。
本文通过测试普通交流异步电机在频率改变时的输出转矩转速和效率曲线,定量的研究了在频率改变时其性能的变化,在此基础上提出了交流异步电机变频调速的最佳频率范围。关键词:变频调速 普通交流异步电机 最佳调速范围Abstract:The system that ismade from common alternate inverter is extensively used. Butpeo-ple still certain the scope ofsuperior frequency thatcommon alternate experience. Author testedthe curves of rotation number, torque and efficiencywhen common alternate electrical at different frequen-cies. On the base, we bring forward the scope of superior frequency that common alternate electrical asynchronousmotor.Key words:adjusting the speed by changing frequency; common alternate electrical asynchronousmotor; optmi um scope that com-mon alternate electrical 变频调速是一种典型的交流电动机调速方法,交流电动机采用变频调速技术不仅能够实现无级调速,而且可以根据负载的不同,通过适当调节电压和频率的关系,使电机始终在高效率区运行,并且保证良好的动态性能,因而被广泛使用[1]。
目前,世界上有60%左右的发电量是通过电动机消耗的。据统计,我国各类电动机的装机容量已超过4亿kW,其中异步电动机约占90%,拖动风机、水泵及压缩机类机械的电动机约1.3亿kW。
在目前4亿kW的电动机负载中,约有50%的负载是变动的,其中的30%可以使用电动机调速[2, 3]。虽然,有专门为变频调速系统而设计的变频调速电机,但是由于变频调速电机价格较贵,所以在大多数有调速要求的系统中都是变频器和普通交流异步电机组成的调速系统[4]。
但是,在实际生产中,还只是凭借经验确定交流异步电机运行的频率范围,而对普通交流异步电机在频率改变时,电机的各项性能指标的大小和变化情况还没有定量研究。在本文中,我们以Y100L1-4普通三相交流异步电机和松下VF-8X变频器组成的变频调速系统为测试对象,测试普通交流异步电机在频率改变时的各项性能指标,以这些实验数据为依据,进而分析确定普通交流异步电机变频调速的最佳调速范围。
在测试中所有的实验均按照国标中三相异步电机型式实验的相关规定进行。1 频率改变时电机的实际性能测试在测试中,电机采用恒压频比控制方式,为了实际测得电机在不同频率下运行时,电机的输出转矩、转速和效率的变化,需要进行电机在不同频率下的负载实验。
为了保护电机,首先根据电机参数,计算出电机在各个频率和转矩提升电压下的转矩转速理论曲线,进而根据其做电机负载实验。最后,利用MATERLAB对测得的离散数据进行处理,将其用光滑曲线连接,并与理论的曲线进行比较分析。
1. 1频率变化时转矩转速理论和实际测得曲线的比较根据电机的T形等效电路图,可以得出电机的转矩转速方程为: 下的转矩转速(转差率)曲线。从图可知,电机在不同频率下的转矩转速理论曲线是一组相互平行的曲线,电机的最大转矩随频率的降低而降低。
实际测得的转矩转速曲线和理论转矩转速存在有落差,这主要是由电机的各种损耗引起的,并且,随着电机负载的增加,电机实际转速相对于理论转速的落差越大,当达到或接近电机最大转矩时,转速会急剧降落[5]。另外,实际转矩转速曲线之间并不平行,而是随着频率降低曲线变得越陡,也就是说电机的机械特性变得越来越软。
可以看出在频率为10Hz时,电机转矩转速实际曲线和理论曲线相差较大,电机的机械特性变得很软,过载能力变得很低。虽然,当电压提升时,电机在低频时的性能会得到一定的改善,例如,实际测试中,在f=20 Hz时,提升电压从0增加到30 V时,电机实际测得的最大转矩从19.5(N·m)增加到了28·5(N.m)。
但是,在f=10 Hz时,其过载能力改善并不理想,理论最大转矩能达到31. 2 (N·m),但是实际测试只有18(N·m),而且,由于机械特性太软,导致转速太低,散热能力变差,同时由于转矩提升电压过高,将引起电机铁心的过分饱和,励磁电流急剧增加,导致绕组过分发热,从而损坏电机,实际能够长期稳定拖动的最大负载只能达到10(N·m)左右。1. 2频率变化时实际测得的效率变化曲线电机的效率是电机性能的重要参数之一,电机的效率可由下式计算得出:η=1-Pcu1+Pfe+Pcu2+PΩ+PΔP1Pcu1=3I21R1 Pfe=3I2mRm Pcu2=3I′22R′2式中:η—效率,Pcu1—定子铜耗,Pfe—电机铁耗,Pcu2—转子铜耗,PΩ—机械损耗,PΔ—杂散损耗,Rm—励磁电阻,I1—定子电流,Im—励磁电流,I′2—转子归算电流。
实验中可测出定转子的电流值,根据温升可修正电机的定转子电阻值,进而计算出电机定转子铜耗和电机铁耗,另外,电机机械损耗和杂散损耗取其推荐值,从而计算出电机的理论效率。而电机实际效率则是由测得的电机输出功率直接除以。
4.单片机控制交流变频调速系统 毕业设计
变频调速作为交流电机调速的主要手段已经在工业领域中应用的十分广泛,其具有的调速范围宽、稳速精度高、动态响应快、适用范围广、运行可靠等技术性能,已逐步取代直流电机调速系统。变频器的控制方式主要有三种:1.通过变频器面板操作,即通过操作面板改变频率的输出和其他运行参数;2.在变频器模拟量输入端输入0~10V或4~20mA信号,通过改变输入模拟量的大小控制变频器的输出频率;3.通过变频器的通讯口(多为RS485)进行控制。第一种方式一般用于现场手动调节和参数设定,后二种方式多用于自动调节和远程控制。工控领域中常用的PLC、DCS等控制系统都具有适用于变频器接口条件的控制模块,可以方便的实现变频器的闭环自动控制,在大中型的控制系统中使用较为普遍。而对于一些小型实验装置和嵌入式控制装置,处理器在控制变频器之外,一般还需要处理键盘输入、显示屏、数据采集和其它过程控制等工作,这种控制要求更适合采用单片机系统作为控制核心,而以PLC加操作面板的形式,虽能实现功能但成本过高,不宜采用。
使用单片机控制变频器可以选择后二种方式,采用通讯口方式控制,其优点是控制功能全面,通过相应的电平转换电路适合变频器的通讯口形式(RS484/RS232/CAN等),就可与变频器进行通讯,硬件简单,二者间的连线数量少连接方便。缺点是需要了解掌握变频器的通讯协议才能进行控制编程,软件设计复杂。由于不同品牌的变频器通讯接口和通讯协议各不相同,目前尚没有统一的标准,只能针对一种变频器进行开发,缩小了变频器品种的选择范围,适用性受到限制。而对于模拟量输入控制方式,则几乎在所有的变频器中都能支持,虽然在功能上比较单一,但可实现调速的主要功能,能满足多数场合的使用要求,具有普遍性。
最常用的模拟量输入调速方法是通过电位器来调节频率,即改变模拟量输入的电压值,达到调节转速的目的。采用机械式电位器虽简单易行,但易磨损,长期使用不够稳定,同时还有一个最大的缺陷是只适合手动调节,不能实现自动调节。笔者采用数字电位器替代机械式电位器,在单片机的控制下,不但能进行简单的手动变频调速,还能根据控制要求实现PID闭环自动控制,不失为一种功能全面的单片机控制变频器的好方法。。
5.单相桥式变流电路整流电路实验报告怎么写
串联型晶体管稳压电路一、实验目的1、熟悉Multisim软件的使用方法。
2、掌握单项桥式整流、电容滤波电路的特性。3、掌握串联型晶体管稳压电路指标测试方法二、虚拟实验仪器及器材双踪示波器、信号发生器、交流毫伏表、数字万用表等仪器、晶体三极管 3DG6*2(9011*2)、DG12*1(9013*1)、晶体二极管 IN4007*4、稳压管 IN4735*1三、知识原理要点直流稳压电源原理框图如图4-1 所示。
四、实验原理 图为串联型直流稳压电源。它除了变压、整流、滤波外,稳压器部分一般有四个环节:调整环节、基准电压、比较放大器和取样电路。
当电网电压或负载变动引起输出电压Vo变化时,取样电路将输出电压Vo的一部分馈送回比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿Vo的变化,从而维持输出电压基本不变。五、实验内容与步骤1、整流滤波电路测试按图连接实验电路。
取可调工频电源电压为16V~, 作为整流电路输入电压u2。整流滤波电路1) 取RL=240Ω ,不加滤波电容,测量直流输出电压UL 及纹波电压 L,并用示波器观察u2和uL波形,记入表5-1 。
U2=16V~2) 取RL=240Ω ,C=470μf ,重复内容1)的要求,记入表5-1。3) 取RL=120Ω ,C=470μf ,重复内容1)的要求,记入表5-1 电 路 形 式UL(V)L(V)纹波uL波形U2=16V~RL=240Ω12.95V6.82V~U2=16V~RL=240ΩC=47Oµf20.24V467mV~ U2=16V~RL=120ΩC=470µf19.619842mV~ 2. 测量输出电压可调范围更改电路如下所示10接入负载,并调节Rw1,使输出电压Uo=9V。
若不满足要求,可适当调整R4、R5之值。3. 测量各级静态工作点调节输出电压Uo=9V,输出电流Io=100mA , 测量各级静态工作点,记入表5-2。
表5-2 U2=14V U0=9V I0=100mA Q1Q2Q3UB(V)10.868.24.94UC(V)17.510.8610.86UE(V)10.19.014.284. 测量稳压系数S取Io=100mA,按表5-3改变整流电路输入电压U2(模拟电网电压波动),分别测出相应的稳压器输入电压Ui及输出直流电压Uo,记入下表。表5-3测 试 值( IO=100mA)计算值U2(V)UI(V)UO(V)R4=1.87K Rw1=30%R5=1.5K RL=120UO(V)R4=510 Rw1=30%R5=1.5K RL=90SR4=1.87K Rw1=30%R5=1.5K RL=1201417.511.929.01S12=0.053S23=0.0521620129.061822.512.079.10 六、思考1、对所测结果进行全面分析,总结桥式整流、电容滤波电路的特点。
桥式整流电路在未加滤波的情况下,输出电压为输入交流电压的正负两半波的直接相加,输出直流平均电压较低,且交流纹波很大。经电容滤波以后,直流输出电压升高,交流纹波电压减小,且电容越大(或负载电流较小)则交流纹波越小。
2、计算稳压电路的稳压系数S和输出电阻Ro,并进行分析。 根据表5-3稳压系数S=0.05(相对于输入电压变化率)。
输出电阻Ro=2(Ω)Uin=20V R8=10 R4=390 R5=1.5K Rw1=1K*40%UL(V)9.06V8.978V8.943VRL(Ω)5109050Ro=( UL1- UL2)RL1RL2/( UL2 RL1 –UL1 RL2)=1.95(Ω) 3、分析讨论实验中出现的故障及其排除方法。1本实验中仿真系统经常出错退出,可能是电路运算量太大造成的。
本人具体的做法是分部仿真:将整流滤波与稳压部分分开仿真,在稳压部分VCC(直流电源)来替代整流滤波的输出。2 本实验中R8=30(Ω)太大,应改为10(Ω)较妥。
以保证正常工作时限流电路不影响稳压电路工作。
转载请注明出处众文网 » 单相交流调压电路仿真毕业论文(求交流自动调压器的毕业设计!急!)