1.求助样本量的计算方法
样本量的计算公式为:
其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取0.5。
样本量是指总体中抽取的样本元素的总个数,应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
扩展资料
抽样方法
1、简单随机抽样
一般的,设一个总体个数为N,如果通过逐个抽取的方法抽取一个样本,且每次抽取时,每个个体被抽到的概率相等,这样的抽样方法为简单随机抽样。适用于总体个数较少的。
2、系统抽样
当总体的个数比较多的时候,首先把总体分成均衡的几部分,然后按照预先定的规则,从每一个部分中抽取一些个体,得到所需要的样本,这样的抽样方法叫做系统抽样。
3、分层抽样
抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层中独立抽取一定数量的个体,得到所需样本,这样的抽样方法为分层抽样。适用于总体由差异明显的几部分组成。
4、整群抽样
整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。
5、多段抽样
多段随机抽样,就是把从调查总体中抽取样本的过程,分成两个或两个以上阶段进行的抽样方法。
参考资料来源:搜狗百科-样本量
参考资料来源:搜狗百科-样本
2.样本量的计算公式
2年啊,这个课题时间太长了啊。这个量也不是固定的,最好不要错失。可以考虑下用样本方差的。样本关于给定点x在直线上散布的数字特征之
一,其中的点x称为方差中心。样本方差数值上等于构成样本的随机变量对离散中心
x之方差的平方和.设X、,…,戈是同分布实随机变
量,点x是选定的方差中心(x〔R').那么,量
s。(x)=艺(x一x)z
称为关于点x的样本方差(sample
variance),由于
s。(x)=s。(见)+n(无一x),)s。(无)二s。,
其中了二(X、+…十戈)加,可见当x二了时关于
x的样本方差取最小值.较小的S。说明样本元素关
于见集中;相反,较大的S。说明样本元素分散.
样本方差的概念,可以自然地推广到多维样本的样本协方差矩阵.
3.样本量如何计算?
具体确定样本量还有相应的统计学公式,不同的抽样方法对应不同的公式。
根据样本量计算公式,不难知道,样本量的大小不取决于总体的多少,而取决于:
(1) 研究对象的变化程度;
(2) 所要求或允许的误差大小(即精度要求);
(3) 要求推断的置信程度。
样本量n=C²σ²/p²
P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。
精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
样本量是指总体中抽取的样本元素的总个数,应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
扩展资料
合理确定样本容量的意义:
1.样本容量过大,会增加调查工作量,造成人力、物力、财力、时间的浪费;
2.样本容量过小,则样本对总体缺乏足够的代表性,从而难以保证推算结果的精确度和可靠性;
3.样本容量确定的科学合理,一方面,可以在既定的调查费用下,使抽样误差尽可能小,以保证推算的精确度和可靠性;另一方面,可以在既定的精确度和可靠性下,使调查费用尽可能少,保证抽样推断的最大效果。
参考资料:百度百科-样本量
4.样本量的计算方法
你好,具体确定样本量还有相应的统计学公式,根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1)
研究对象的变动程度;(2)
所要求或允许的误差大小;(3)
要求推断的置信程度。也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。因此,如果不同城市分别进行推断时,"大城市多抽,小城市少抽"这种说法原则上是不对的。在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。
从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。
总之,在确定抽样方法和样本量的时候,既要考虑调查目的,调查性质,精度要求(抽样误差)等,又要考虑实际操作的可实施性,非抽样误差的控制、经费预算等。专业调查公司在这方面会根据您的情况及调查性质,进行综合权衡,达到一个最优的样本量的选择。
5.统计学中,样本量的计算方法?
(1)重复抽样方式下:n为样本容量、d为抽样误差范围、σ为标准差,一般取0.5。
变量总体百重复抽样计算公式:
属性总体重复抽样:
(2)不重度复抽样方式下:
变量总体不重复抽样计算公式:
属性总体不重复抽样:
扩展资料
合理确定样本容量知的意义:
1、样本容量过大,会增加调查工作量,造成人力、物力、财力、时间的浪费;
2、样本容量过小,道则样本对总体缺乏足够的代表性,从而难以保证推算结果的精确度和可靠性;
3、样本容量确定的科学合理,一方面,可版以在既定的调查费用下,使抽样误差尽可能小,以保证推算的精确度和可靠性;另一方面,可以在既定的精确度和可靠性下,使调查费用尽可能少,保证抽样推权断的最大效果。
参考资料来源:百度百科-样本量
参考资料来源:百度百科-样本容量
6.样本容量怎么算
样本容量:
从批中抽取的单位产品的汇集,称为样本。
样本中单位产品数,称为样本量
均值:
一个子组、样本或总体中最大与最小值之差。数学公式:
R= =(每群数据的最大值)—(每群数据的最小值)
标准差:
过程输出的分布宽度或从过程中统计抽样值(例如:子组均值)的分布宽度的量度,用希腊字母σ或字母s(用于样本标准差)表示。σ的计算.
具体确定样本量还有相应的统计学公式,不同的抽样方法对
应不同的公式。根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1) 研究对象的变化程度;(2)
所要求或允许的误差大小(即精度要求);(3)
要求推断的置信程度。也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。因此,如果不同
城市分别进行推断时,大城市多抽,小城市少抽这种说法原则上是不对的。在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。
7.样本量的计算方法
你好,具体确定样本量还有相应的统计学公式,根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1) 研究对象的变动程度;(2) 所要求或允许的误差大小;(3) 要求推断的置信程度。
也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。因此,如果不同城市分别进行推断时,"大城市多抽,小城市少抽"这种说法原则上是不对的。
在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。 从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。
具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。
总之,在确定抽样方法和样本量的时候,既要考虑调查目的,调查性质,精度要求(抽样误差)等,又要考虑实际操作的可实施性,非抽样误差的控制、经费预算等。专业调查公司在这方面会根据您的情况及调查性质,进行综合权衡,达到一个最优的样本量的选择。
8.回顾性研究中样本量怎么计算
效果参数:HR,风险比,是两组患者瞬时死亡概率之比,是衡量干预效果最常用的参数。
HR可近似计算为:HR=对照组 mOS / 试验组 mOS 除此之外该类参数还有死亡风险(Hazard Rate),死亡率(Mortality,如5年死亡率),生存率(Proportion Surviving)。这些参数都可以进行相互换算,例如在生存数据满足指数分布假设下,试验组与对照组的。
样本量计算中对参数的估计主要是对干预效果的估计。临床常用的干预效果参数主要有mOS和t年死亡率(或生存率),因为这两组参数最直观也最容易理解。
有了两组的mOS或t年死亡率(生存率)就可以推算出其他所有参数,例如HR。 扩展资料 试验组的mOS相对难以估计。
因为既然是试验组,通常该治疗方案研究比较少,可直接参考的同类研究更少,如果没有,一般可借助于以下几种间接方法: 1) 参考前期试验数据。在药物研究过程中,一般会有前期小规模试验的数据,可以对其效果进行参考。
如果前期试验使用的结局也是OS,可以直接参考,如果是ORR,DCR,PFS等数据,可以对比其他药物的前期试验这些指标的数据,如果表现更好,那么有理由相信OS也会比该药物OS要好。 需注意,前期试验的样本量一般较小,另外ORR、DCR、PFS等指标与OS的相关性未必很强,因此不能完全相信前期试验结果。
2) 参考无对照研究。在临床研究中,临床大夫经常会把科里接受过该治疗的患者的治疗情况进行汇总发表。
这些研究一般没有对照组,样本量也不够大,甚至很多是回顾性的研究。对于这样的研究,应该尽可能多找到,比对结果,可以利用Meta分析的方法求得其合并值用于参考。
3) 参考其他干预措施的效果。可以将待研究的干预措施机理与其他干预措施机理进行比较,然后根据其他干预措施既有的大型试验结果反推。
例如,国外一新型抗癌药已经上市,其患者mOS为11个月,而待评价的干预措施机理上不太可能优于该新药,因此估计其mOS小于11个月相对是合理的。 4) 由HR反推。
有时研究者会发现一些研究仅给出了HR的参考,那么可以依据上文公式反推试验组mOS。 5) 研究者的信心和可用资源。
所有的估计都只能给出一个大概的范围,不可能得到精确的结果。但是参考的途径多了,估计的范围会逐渐缩窄。
最终估计值的确定,不可避免受到主观猜测(基于临床经验)以及可用资源的影响,这正是临床试验的风险所在,不可回避。
9.在统计学中的样本量是如何计算的,置信度是如何计算的
置信度就是用一种方法构造一百个区间如果有95个区间包含总体真值,就说置信度为95%(包含总体真值的区间占总区间的95%)。
E:样本均值的标准差乘以z值,即总的误差。P:目标总体占总体的比例。(比如:一个班级中男生占所有学生的30%。则p=30%)。
样本量从总体中抽取的样本元素的总个数。样本量的计算公式为: N=Z 2 *(P *(1-P))/E 2,其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取0.5。
扩展资料:
在统计学中,当估算一个变量的期望值时,一个经常用到的方法是重复测量此变量的值,然后用所得数据的平均值来作为此变量的期望值的估计。
在概率分布中,期望值和方差或标准差是一种分布的重要特征。
在经典力学中,物体重心的算法与期望值的算法十分近似。
期望值也可以通过方差计算公式来计算方差
参考资料来源:搜狗百科:期望值
转载请注明出处众文网 » 毕业论文样本量计算公式(求助样本量的计算方法)