1.英文摘要翻译
Since the 1990s, the world's foreign investment is rapidly growing, its pace has been far higher than the rate of economic growth。
Particularly in Asia, China and India as the two largest emerging markets, has become the top priority of multinational companies compete layout。 And because the two countries in many ways are very similar, such as a large population, vast market potential, and so huge, so the two governments on the policy guidance it is particularly significant role, so that the Sino-Indian dispute turned into a great extent The two Government's policy direction and scale on the other。
This article compared the two countries in attracting foreign investment policy, adopted by the similarities and differences in an attempt to find foreign investors and foreign capital utilization celebrate the strengths and problems, and make relevant recommendations and opinions。
2.图论中用矩阵表示简单图,复杂图怎么表示
N = 20; % 随机生成点的数量x = rand(N,1); % 生成点的坐标y = rand(N,1);L = rand(N,N) > 0.9; % 随机生成连接关系(随机数大于门限值0.9为有连接)D = round(squareform(pdist([x y]))*100)/100; % 计算各节点距离(保留两位小数)DG = sparse(D.*L); % 用稀疏矩阵表示图UG = tril(DG + DG'); % 转换为无向图view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'));% 显示图。
3.分块矩阵的应用论文
[1]毛纲源. 一类特殊分块矩阵为循环矩阵的循环分块矩阵的几个性质[J]. 应用数学,1995,(3).
[2]游兆永,姜宗乾,. 分块矩阵的对角占优性[J]. 西安交通大学学报,1984,(3).
[3]曹重光. 体上分块矩阵群逆的某些结果[J]. 黑龙江大学自然科学学报,2001,(3).
[4]庄瓦金. 非交换主理想整环上分块矩阵的秩[J]. 数学研究与评论,1994,(2).
[5]曹礼廉,李芳芸,柴跃廷. 一种用于MRP的分块矩阵方法[J]. 高技术通讯,1997,(7).
[6]逄明贤. 分块矩阵的Cassini型谱包含域[J]. 数学学报,2000,(3).
[7]杨月婷. 一类分块矩阵的谱包含域[J]. 数学研究,1998,(4).
[8]何承源. R-循环分块矩阵求逆的快速傅里叶算法[J]. 数值计算与计算机应用,2000,(1).
[9]马元婧,曹重光. 分块矩阵的群逆[J]. 哈尔滨师范大学自然科学学报,2005,(4).
[10]游兆永,黄廷祝. 两类分块矩阵的性质与矩阵正稳定和亚正定判定[J]. 工程数学学报,1995,(2).
4.席博彦教授关于矩阵方面的论文的基本步骤
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。
这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。
在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。
关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。
成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。
但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。
逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。
其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。
矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。
1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。
英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。
他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。
凯利还提出了凯莱-哈密尔顿定理,并验证了3*3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4*4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的[2] 。
1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。
至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。
庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。
在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。
转载请注明出处众文网 » 图论矩阵毕业论文(英文摘要翻译)