1.六年级数学小论文300字 三篇 一篇或两篇也行
以前,我一直以为学习”求最小公倍数”这种知识枯燥无味,整天与”求11和12的最小公倍数”类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。
然而,有一件事却改变了我的看法。 那是前不久的事了,爷爷和我一起乘坐公共汽车去青少年宫。
我们爷俩坐的是3路车,快要出发的时候,1路车正好也和我们同时出发。此时爷爷看着这两路车,突然笑着对我说:”小溦,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:”行!””那你听好了,如果1路车每3分钟发车一次,3路车每5分钟发车一次。
这两路车至少再过多少分钟后又能同时发车呢?”稍停片刻,我说:”爷爷你出的这道题不能解答。”爷爷疑惑地看着我:”哦,是吗?””这道题还缺一个条件:1路车和3路车的起点站是同一个地方。”
爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:”我这个'数学博士'也有糊涂的时候,出的题不够严密,还是小溦想得周全。”我和爷爷开心地哈哈地大笑起来。
此时爷爷说:”那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:”再过15分钟。因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3х5=15),所以15就是它们的最小公倍数。
也就是两路车至少再过15分钟能同时发车。”爷爷听了夸我:”答案正确!100分。”
”耶!”听了爷爷的话,我高兴地举起双手。从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。
2.六年级数学小论文
感悟数学
曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的区别就在与你是拥有了一条鱼,还是拥有了一张网。 数学,是一门非常讲究思考的课程,逻辑性很强,所以,总会让人产生错觉。 数学中的几何图形是很有趣的,每一个图形都互相依存,但也各有千秋。例如圆。计算圆的面积的公式是S=∏r²,因为半径不同,所以我们经常会犯一些错。例如,“一个半径为9厘米和一个半径为6厘米的比萨饼等于一个半径为15厘米的比萨饼”,在命题上,这道题目先迷惑大家,让人产生错觉,巧妙地运用了圆的面积公式,让人产生了一个错误的天平。 其实,半径为9厘米和一个半径为6厘米的比萨饼并不等于一个半径为15厘米的比萨饼,因为半径为9厘米和一个半径为6厘米的比萨饼的面积是S=∏r²=9²∏+6²∏=117∏,而半径为15厘米的比萨饼的面积是S=∏r²=15²∏=225∏,所以,半径为9厘米和一个半径为6厘米的比萨饼是不等于一个半径为15厘米的比萨饼的。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧,这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的。 记住,站在峰脚的人是望不到峰顶的。
3.六年级数学小论文800字
有一篇六年级学生的小论文,谨供参考!
数学的色彩
清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。
上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是0.38元,我用心算整好200度,我把单价变为分数是38/100,列式:200*(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。
下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。
夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。
生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。
望能帮您!
4.六年级数学小论文300字左右的
数学小论文:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。
比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。
这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲。
其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。
所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
数学小论文 今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!! 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。
这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。
仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47*5=244,把首项加末项的和乘项数除以2,(9+244)*48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)*48÷2*2+(2+49)*48÷2*2+(3+50)*48÷2*2=6072。
这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)*5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)*5+4*48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。
我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘。
5.六年级数学小论文
你可以写数学平方问题的小论文:比如:1*1=12*2=1*1+(1+2)=43*3=2*2+(2+3)=9 ……10*10=10011*11=10*10+(10+11)=12112*12=11*11+(11+12)=144 ……20*20=40021*21=20*20+(20+21)=44122*22=21*21+(21+22)=484 …… 也就是说一个数(自然数)的平方等于比它小1的数的平方加上这两个数的和的结果.n*n=(n-1)*(n-1)+(n-1+n) 具体语言组织,你自己来丰富,可以多举例子. 注:其中*表示乘号 第二篇 数学小论文 关于“0” 0,可以说是人类最早接触的数了。
我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。
我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。
2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”
这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。
后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。
203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”
我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
初一数学小论文 浅谈多媒体技术在教学中的作用 一个有经验的教师在编写教案时,都要明确教学目的、重点、难点、课时安排和教学过程等,甚至对自己的语言、表情、和板书等都有所考虑,对于教具、实物、模型和实验都要事先做好准备。其目的在于让学生明确和接受所要讲解的知识。
有了多媒体技术,这一切都变得更容易实现了。因为用多媒体来辅助教学,以逼真、生动的画面,动听悦耳的音响来创造教学的文体化情景,使抽象的教学内容具体化、清晰化,使学生的思维活跃,兴趣盎然地参与教学活动,有助于学生发挥学习的主动性,从而优化教学过程。
具体的说,在现在各科的课堂教学中,多媒体技术有如下几点作用: 一、调整学生情绪,激发学习兴趣 兴趣是由外界事物的刺激而引起的一种情绪状态,它是学生学习的主要动力。然而许多的教学内容通常本身较为枯燥无味,这就需要每位教师善于采用不同的教学手段,以激发学生的兴趣。
根据心理学规律和小学生学习特点,有意注意持续的时间很短,加之课堂思维活动比较紧张,时间一长,学生极易感到疲倦,就很容易出现注意力不集中,学习效率下降等,这时适当地选用合适的多媒体方式来刺激学生,吸引学生,创设新的兴奋点,激发学生思维动力,以使学生继续保持最佳学习状态。 如在教学“长方形的面积”时,老是运用公式计算面积,学生感觉比较厌倦,为了吸引学生注意力,活跃课堂气氛,拓宽学生思路,运用多媒体出示了一道“智慧爷爷”出的思考题:把一个正方形裁成两个完全相同的长方形,裁成的两个长方形周长之和与正方形周长有何变化?把两个完全相同的长方形拼成一个正方形,它们的周长又有何变化?先让学生根据题意想象,然后再电脑演示。
演示过程中,画面不断闪烁,使学生清楚地感受到了周长的变化。同学们一看,兴趣来了。
最后让学生互相讨论,就这样让学生在开放自由的情况下解决了该题,同时培养了学生的想像力。 二、形象导入新课,创设学习情景 导入新课,是课堂教学的重要一环。
“好的开始是成功的一半”,在课的起始阶段,迅速集中学生的注意力,把他们思绪带进特定的学习情境中,激发起学生浓厚的学习兴趣和强烈的求知欲,对一堂课教学的成败与否起着至关重要的作用。运用电教媒体导入新课,可有效地开启学生思维的闸门,激发联想,激励探究,使学生的学习状态由被动变为主动,使学生在轻松愉悦的氛围中学到知识。
如低年级学生,他们的定向能力尚处在较低的层次,他们的注意状态仍然取决于教学的直观性和形象性,很容易被新异的刺激活动而兴奋起来。针对这些情况,运用多媒体,激起学生的学习兴趣。
教《锄禾》这课,在导入新课时,可以用一组“动画”:“太阳火辣辣地炙烤着大地,辛勤的农民手拿锄头用力地耕种,大颗大颗的汗珠从额头滚落下来,滴入。
6.小学六年级数学论文
以下是两篇论文:
一:大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
二:圆周率“π”的由来 很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今. π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法. 公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416. 公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926
7.数学小论文(六年级)
神奇的数学其实就在我们身边,让我们一起从身边的每一件小事做起,你一定会发现这神奇的数学无时无刻都在影响着我们,帮助着我们.
数学知识在人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。
普通人一般只了解数学与生活某一方面的联系,而体会不到它与生活各个方面的关联。人们总是认为数学比较抽象,对实际工作没有直接的帮助,没有必要去深入地学习和研究数学。其实不然,数学与其它科学一样,与我们的生活息息相关。 数字0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。 谈到考试,同学们往往认为这是用来检查学生的学习质量的。其实考试手段(口试、笔试等等),以及试卷本身也是有质量高低之分的。现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量。只有质量合格的考试才能有效地检测学生的学习质量。
文艺、体育,也无一不用到数学。我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”。然后就剩下的分数计算平均分,作为这位演员的得分。从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉。这一切都包含着数学道理。 数学已成为人们在日常生活中不可分割的一部分,它像一个忠实的伙伴形影不离地跟我们,帮助我们。数学就像是一座峭崖陡壁,怪石嶙峋地高峰,只要我们勇于攀登,那过程中发生的一切将会让我们受用无穷,学好数学知识就如同拥有了一件无价之宝。我相信数学会伴随我们一生。
8.六年级数学小论文600字
节约用电 保护环境
搬到新房子以后,妈妈说:“家里的开销真大啊,每个月水电煤气还有物业费、电梯费要不少钱呢,要节约一点了,还是先去开通分时电表吧!”
六个月以后,供电公司的电费账单来了.我问妈妈:“你开通的分时电表真的节约钱了吗?”妈妈说:“你自己去研究一下吧.”我打开账单一看,2009年1月到6月,我们家一共用了2724度电,其中峰时用电量是2060千瓦时,谷时用电量是664千瓦时,峰谷用电量比例是75:25.到底节约了多少钱呢?我拿出笔来一算,如果没有分时电表,我们家应该支付1439元,开通后,只要支付1388元.“妈妈,我们节约了51元钱.”我对着在厨房做饭的妈妈喊道.
妈妈从厨房探出头来,说:“分时电表确实节约了,不过,我们还要想想别的节电的方法.你和爸爸也出出主意.”爸爸说:“空调可以把温度调到26度,房间的门窗关严实了,可以节约不少电.”妈妈点点头说:“我记得有首儿歌‘高档启动低档转,慢慢转着就省电,风由凉处吹热处,蒸蒸暑气不愁散.’”我说:“妈妈说得真好,我老是不节约用电,以后我看完电视就及时关掉,上完卫生间一定记着关灯了.”正说着,家里的洗衣机嘟嘟嘟地提醒已经洗好了,我脑袋里灵光一闪:“洗衣机也可以晚上九点以后再洗啊!”妈妈笑着点点头:“确实是个好主意!”
我高兴地对妈妈说:“节约了电费,我们就可以买别的好东西了.”妈妈说:“节约电费不仅为家里省了钱,更重要的是节约一度电等于节约4升水等于节约0.4千克煤,等于减少排放0.997千克二氧化碳呢!”我恍然大悟,原来节约用电就是节约能源,就是在保护我们生活的地球啊.我一定要节约用电.
9.数学小论文六年级
数学小论文六年级
论文题目:《数学论文——数学的广泛》
数学是什么呢?单纯的算式、枯廖乏味得标题?数学,不就是数的学问吗?那你就太不了解数学了。
我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具。
数学在生活中无处不在,我们的一切日常几乎都用到了它。如:
“水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学。”
“要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学。”
“生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学。这使得生物学获得了重大的成就。
在买衣物时,物品所进行的优惠就运用到了数学中的折扣与分率的知识运用。
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样,由此可见数学的广泛性。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。
广泛的应用性也是数学的一个显着特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
现在数学中角的运算出现了跨科学趋势,这是知识发展的结果,相信会有更多更新的综合题在这种趋势中产生,只希望我们能够迎着趋势,一同进步﹗
原文作者: 上岗大街第二小学(石岗二校)六年级:魏子诚。
10.一篇小学六年级数学论文
数学小论文
——足球场上的数学
上周四,我在操场上和丁立、杜子凡、蔡子煜等人踢足球。中场休息时,我和丁立坐在墙角边休息。
这时,我突然想到了一个小红和小丁踢足球的题目,于是就问丁立:“小红和小丁在踢足球,小红每小时踢进20个,小丁每小时踢进30个,现在是下午一点十分,问下午什么时候小红和小丁一共踢进90个?”
丁立一下子想不出来,就说:“笔和草稿纸呢?”我想:现在有笔和草稿纸你也未必做得出来呢!其实这到题的解题方法很简单:先算出小红和小丁平均几 分钟踢进一球?再算出踢进90个球要几分钟?最后把所需时间加上一点十分,就能算出什么时候一共踢进90个球。
没想到一个小小的数学题竟和生活有着联系。看来生活是离不开数学的。生活中无时无刻不与数学打交道,足球场上也不例外。例如,足球场的大小就有严格的数字规定:长90—120米,宽45—90米,球门宽7. 32米,高2.44米,中圈半径为9.15米等。把足球场与数学联系起来,.确实是一件有趣的事。
转载请注明出处众文网 » 六级数学毕业小论文(六年级数学小论文300字三篇一篇或两篇也行)