1.数学论文
数学家庭中的一对孪生兄弟――浅谈轴对称图形的应用数学的世界真可谓是浩瀚无比。
由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。
我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。
有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。
轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。
当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。
在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。
一、生活当中的轴对称图形1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。
而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。
比如蜻蜓、飞蛾等。如果到了秋天,远看稻田,金黄的一片,不禁使人感觉到又是一个丰收的季节。
就在这个令人喜悦的季节里,我行走在田边的小路上,随手捡起了一片金黄的树叶,仔细的观察了一下,发现其实树叶也有对称轴。如果我们将树叶中间的那根经,当成是其左右两边的对称轴,那将树叶右边部分沿着这条对称轴对折过去,正好与左边的一半树叶重合。
2、商标中的轴对称图形有一次,我跟我的家人去中国银行取钱,我无意间发现中国银行的标志也是一个轴对称图形。这个图形的对称轴有两条。
第一条是图标中两竖相连接所形成的,而另一条就是方框上下两条横线连接的线段的中点,所在的那一条直线就是其第二条对称轴。和中国银行一样的还有中国联通、中国农业银行以及奔驰汽车等轴对称图形。
但是如果大家觉得前面几个例子,平时都没有注意到的话,那么下面说到的这个例子大家肯定熟悉的不得了。这个例子就是商标,我先来举一个吧。
平时我最大的兴趣就是吃零食。所以我对“旺旺”这个商标熟悉的不得了。
我发现在旺旺这个商标当中,将其头发上的一个中点到两脚脚后跟之间的线段的中点,想连接的线段所在的那一条直线就是其对称轴。也正是这条对称轴将旺旺这个图标分成了相等的两份。
像旺旺这样具有对称轴的商标还有很多。比如:五粮液的商标、麦当劳的商标、CONVERSE(匡威)的商标等等。
而且这些图形都是我们日常生活中常见的,这也不告诉了我们,只要我们认真、仔细的观察生活,数学的无处不在吗。二、建筑当中的轴对称图形说了生活中较为普通也较常见的轴对称图形后,也应该说说在建筑方面关于轴对称的宏伟建筑了。
像我们中国的天安门城楼。如果用线段连接天安门城楼的左右两边,这条线段的中点所在的直线就是对称轴了,这条对称轴不就把天安门城楼分成了相同的两份了吗?法国的埃菲尔铁塔,是法国标志性建筑之一。
它的对称轴就是把铁塔底部的两边相连接。连接后的线段的中点与塔尖的点相连接的线段所在那一条直线了。
还有一些建筑也利用了轴对称的方法,他们在建筑的前方建了一个很大的水池,使建筑倒映在水中,从而形成了轴对称的效果,也增大了空间,使原本的建筑更美观,更加壮观。像泰姬陵,它不就是建筑与轴对称图形相结合的最好例子吗。
在地球的另一边,有一座建筑物深深地影响着整个世界的历史,这座建筑物就是白宫。这是一座位于美国华盛顿的著名行政大楼。
白宫著名的背后,轴对称起了极其重要的作用。白宫它的对称轴就是顶部的点与底部左右两边线段的中点,相连接的线段所在的那一条直线。
对了,还有我们每个人家里都会有门,一些建筑师为了使门显得更加大气,更加庄重。就把门进行设计,使门的左右两边相同,古代衙门的大门和一些官府府邸的大门也设计成了轴对称的形式。
使大门显得更加有气势,愈发显的威严。从中我们也不难发现,只要懂得轴对称图形,善于利用轴对称图形,就能使轴对称图形溶入到方方面面。
三、文学当中的轴对称图形1、文字中的轴对称图形每个人都知道,我们中华民族有着5000年的悠久文化。这么多年的文化所沉淀下来的瑰宝可谓是数不胜数。
剪纸是我们民族十分古老的民间艺术之一。就是在这艺术品当中也不乏有轴对称的应用。
让我来举个例子吧。我还记得以前我奶奶教我剪繁体的“喜”字时,首先是将红纸对折一下,之后用剪刀在纸上挥舞了一会。
打开刚刚对折的纸时,出现了一个“喜”字,当时我看了之后,心里那个高兴啊,惊奇啊,但是就是不知道为什么会这样。现在长大了,我也知道了其实在剪“喜”字的过程当中,也运用了轴对称。
还有许多剪纸。
2.应用数学专业毕业论文
先修课程:数学与应用数学专业主要课程、教育类课程等
适用专业:数学与应用数学(本科、师范)
一、目的
培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。
二、论文选题
论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:
1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;
2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;
3.结合自己所学的专业知识,联系实际解决一些应用问题;
4.对中学有关数学课程的教材、教学方法进行专题研究;
5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;
6.对新课程改革的理论与实践进行探讨。
论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。
三、对毕业论文的基本要求
1.立论、观点要符合马克思主义基本原理;
2.对学术的探讨要符合科学性和逻辑性;
3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;
4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;
5.文字通顺,表达确切,书写规范,独立完成;
6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;
7.论文应包括英文名、英文摘要和英文关键词;
8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。
四、毕业论文成绩评定
1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。
2.成绩分5个等级:优秀、良好、中等、及格、不及格。
毕业生毕业论文统一格式要求
一、论文用纸:B5纸打印。
二、论文标题:
1、主标题:用小二号黑体字,置于首页第一行,居中。
2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。
三、论文正文:
1、字体:用四号仿宋体。
2、段落:行距为24磅。
3、页码:居中。
四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。
五、注释:如有注释,皆在正文之后注明。
3.大学数学论文
如何写数学论文:选题与写作方法
引言
在审阅数学论文过程中发现很多论文内容简单,或是一两个习题证明或是将教材内容,他人论文组合改编,简单重复,更有甚者直接抄袭。很多从事数学教育工作人士认为数学教育论文难写,事实上他们还没有掌握撰写数学论文的规律。
数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。
1 撰写数学论文应具有原则
1.1 创新性
作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。
1.2 科学性
科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。
1.3 规范性
规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。
2 撰写数学论文忌讳
2.1 大题小作
论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。
2.2 关门写稿
一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。
2.3 形式思维混乱
科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。
3 关于数学论文选题
数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:
(1)需要性 选题应从社会需要和科学发展的需要出发。
(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。
(3)科学性 选题应有最基本的科学事实作依据。
(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。
4 关于数学论文文风
4.1 语言表达确切
从选词,造句,段落,篇章,标点符号都应正确无误。
4.2 语言表达清晰简洁
语句通顺,脉络清楚,行文流畅,语言简洁。
4.3 语言朴实
语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。
4.哪里有数学毕业论文?
数学本科毕业论文--数学教学与学生创造思维能力的培养 摘 要:现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性 思维的实质就是求新、求异、求变。
在数学教学中培养学生的创造思维、激 发创造力是时代对我们提出的基本要求。怎样培养学生的创造思维能力: 1、指导观察2、引导想象3、鼓励求异4、诱发灵感 关键词:创造 思维 前 言:在竞争日益激烈的当今社会,如何让在学校里学习的学生提前适应社会的发 展,使他们能够顺利地成长,是学校、家庭和社会所面临的一个重要问题, 本文就在数学教学中如何培养学生的创造思维能力提出自己的一些看法 现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维 的实质就是求新、求异、求变。
创新是教与学的灵魂,是实施素质教育的核心;数学 教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积 极探索培养和训练学生创造性思维的原则、方法。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。
本文就创造思维及数学教学中如何培养学 生创造思维能力谈谈自己的一些看法。 一、创造思维及其特征 思维是具有意识的人脑对客观事物的本质属性和内部规律性的概括的间接反映。
创造思维就是合理地、协调地运用逻辑思维、形象思维及直觉思维等多种思维方式, 使有关信息有序化,以产生积极的效果或成果。数学教学中所研究的创造思维,一般 是指对思维主体来说是新颖独到的一种思维活动。
它包括发现新事物、提示新规律、建立新理论、创造新方法、获得新成果、解决新问题等思维过程,尽管这种思维结果 通常并不是首次发现或超越常规的思考。 创造思维是创造力的核心。
它具有独特性、新颖性、求异性、批判性等思维特征, 思考问题的突破常规、新颖独特和灵活变通是创造思维的具体表现,这种思维能力是 正常人经过培养可以具备的。 二、创设适宜的教学环境 教师必须用尊重、平等的情感去感染学生,使课堂充满民主、宽松、和谐的气氛, 只有这样学生才会热情高涨,才能大胆想象、敢于质疑、有所创新,这是培养学生创 造性思维能力的重要前提。
1、教育创新是教师的职责。教师应该深入钻研教材,挖掘教材本身蕴藏的创造 因素,对知识进行创造性的加工,使课堂教学有创造教育的内容。
例如教学轴对称图形时,提出 “在河边修一个水塔,使到陈村、李庄所用的水管长度最少,如何选定这个水塔的位 置?”从而把课本内容引申到实际生活中来,使教学富有实践性、科学性、现代性。突出学生的“主体”地位。
要发扬教学民主,尊重学生中的不同观点,保护学生中学习争辩的积极性,让学生敢于想象,敢于质疑,敢于标新立异,敢于挑战权威,给每个学生发表自己见解的机会,最大限度地消除学生的心理障碍,形成学生主动学习,积极参与的课堂教学氛围,处理学生学习行为时,尊重他们的想法,鼓励别出心裁等。 三、怎样培养学生的创造思维能力 1、指导观察 观察是信息输入的通道,是思维探索的大门。
敏锐的观察力是创造思维的起步器。 可以说,没有观察就没有发现,更不能有创造。
儿童的观察能力是在学习过程中实现 的,在课堂中,怎样培养学生的观察力呢? 首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要 在观察中及时指导。
比如要指导学生根据观察的对象有顺序地进行观察,要指导学生 选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科 学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。
第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。
教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。
借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。
2、引导想象 想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的, 而想象可以包罗整个宇宙。
"在教学中,引导学生进行数学想象,往往能缩短解决问 题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。
数学想象一 般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎 实的基础知识和丰富的经验的支持。
第二,是要有能迅速摆脱表象干扰的敏锐的洞察 力和丰富的想象力。第三,要有执着追求的情感。
因此,培养学生的想象力,首先要 使学生学好。
5.求数学毕业论文30个参考文献
参考
1 邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)
2 黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)
3 胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)
4 竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)
5 杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,1993
1、《计算机教育应用与教育革新——'97全球华人计算机教育应用大会论 文集》李克东 何克抗 主编 北京师范大学出版社 1997
2、《教育中的计算机》 全国中小学计算机教育研究中心(北京部)1998
3、林建详编:《CAI的理论与实践——迎接21世纪的挑战》 全国CBE 学会第六次学术会议论文集 1993 北京 北京大学出版社。
[1] 参见D. A. Drennen, ed., A Modern Introduction to Metaphysics, New York: Free Press of Glencoe, 1962。 此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。
[2] 参见R. G. Collingwood, An Essay on Metaphysics, Oxford: Clarendon Press, 1940。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”
[3] 《形而上学》,982b14-28。
[4] 引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。
[5] 亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。
[6] 参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。
[7] 《古希腊哲学》,78页。
[8] 《毕达哥拉斯和毕达哥拉斯学派》,115页以下。
[9] 同上书,125页。译文稍有改动。
[10] 《希腊哲学史》第1卷,290页。
[11] 亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。
[12] 《毕达哥拉斯与毕达哥拉斯学派》,107页以下。
[13] 巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。 相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板
够不够 我在给你找
6.数学论文
一,关于开设《大学数学》课程的思考 数学教研室 卢介景 [摘要] 二十世纪八十年代初期,我国卫生部开始把高等数学列为医学类各专业的必修课程。
几乎同时,世界开始进入“数学技术”的新时代。去年国家教育部高教司组织了一次重要会议,研讨“数学教育在大学教育中的作用”,建议开设“大学数学”课程。
医学院校面对新的挑战、新的要求,当有新的认识、新的行动。本文综合简介有关“数学技术”和“大学数学”的重要资料,结合我校实际提出一些教改建议。
此文也献给即将到来的“国际数学”年——2000年。 [关键词] 数学技术 大学数学 教学改革 一.“数学技术”的新挑战 1984年1月25日,在美国数学会(AMS)和美国数学协议(MAA)联合年会上,美国总统尼克松的科学顾问David说:“……,对数学研究的低水平的资助,只能出自对数学带来的好处的完全不适当的估价。
显然,很少的人认识到如今被如此称颂的‘高技术’本质上是数学技术。”此后,“‘高技术’本质上是数学技术”的说法在学术界,特别是在数学界广为流传。
例如,在欧洲工业数学联合会的宗旨中,就引述了David的这句话。 1989年8月18日,在中国数学会召开的数学教育与科研座谈会上,钱学森教授指出:“……,这是数学技术,即怎样给出一个方法,能使科学的理论通过电子计算机解答具体的科学技术问题。
”“……,数学的发展关系到整个科学技术的发展,而科学技术是第一生产力;所以数学的发展是一件国家大事。” 五十年前,数学虽然也直接为工程技术提供一些工具,但基本方式是间接的:先促进其他科学的发展,再由这些科学提供工程原理和设计的基础。
“高技术”的出现,把我们的社会推进到了数学工程技术的时代。 数学与工程技术之间,在更广阔的范围内和更深刻的程度上,以新的方式直接地相互作用着,极大地推动了数学和工程科学的发展。
数学从后台走向前台。 数学技术的例子是很多的。
例如,代数与密码技术;Radon与CT(计算机层析)技术;大规模线性规划求解技术在经济、管理中的应用;与保险有关的精算学软件;期货、期权交易中的期权定价软件;信息提取与处理软件;小波技术在信息科学中的应用;穿甲弹的计算仿真技术;并行计算技术在气象和工程中的应用;等等。 创建于1964年的美国工程院,过去是不选数学家为院士的。
但是,在1997年选出的85位院士中,有3位数学家;在1998年选出的84位院士中,又有3位数学家。这从一个方面说明了时代对“数学技术”的认可。
鉴于数学科学在21世纪所具有的关键的重要性,即将到来的公元2000年,被联合国定为“国际数学年”。 在今后两千年内,在人类思想领域里,具有压倒性的新情况,将是数学地理解问题占统治地位。
“数学技术”对我国大学数学教育提出了新的挑战。 二.“大学数学”的新要求 1998年10月,教育部高教司在北京组织了一个重要会议,研讨“数学教育在大学教育中的作用”。
在一些重要问题上,教育部领导、专家与第一线数学教师取得了广泛的共识。 在面临21世纪数学思想和方法对世界经济和技术发展起着越来越重要作用的形势下,必须明确:数学是培养和造就各类高层次专门人才的共同基础。
对非数学类专业的学生,大学数学基础课的作用至少有以下三个方面。 首先,它是学生掌握数学工具的主要课程。
目前的主要问题是,对“工具性”的理解过窄,甚至把数学基础课看成只是为专业课程服务的工具。历史的经验告诫我们,这将导致学生基础薄弱、视野狭窄、后劲不足、创新乏力,十分不利于面向21世纪人才的培养。
其次,它是学生培养理性思维的重要载体。 从本质上讲,数学研究的是各种抽象的“数”和“形”的模式结构,运用的主要是逻辑、思辩和推理等理性思维方法。
这种理性思维的训练,是其他学科难以替代的。这对大学生全面素质的提高、分析能力的加强、创新意识的启迪都是至关重要的。
再次,它是学生接受美感熏陶的一种途径。 数学是美学四大中心建构(史诗、音乐、造形和数学)之一。
数学为之努力的目标:将杂乱整理为有序,使经验升华为规律,寻求各种运动的简洁统一的数学表达等,都是数学美的表现,也是人类对美感的追求。 对大学数学教育改革,要转变教育观念,用正确的教育思想指导改革的实践。
要以数学统一性的观点,从全面素质教育的高度,来设计数学基础课程的体系。把微积分、代数、几何以及随机数学作为大学非数学专业的四门必修基础课程,并把这一序列课程统称为《大学数学》。
根据数学教学自身的特点以及长期实践的经验,对大学数学的课堂教学学时,应保障其基本稳定。 对一般理工和财经管理类专业,学时不应少于300,其中少数对数学要求较低的学校和专业,也不应少于240;对农林类各专业,不应少于200;医科类力争不低于140;文科类争取达到140。
数学教学的安排不能过于集中,最好不少于两个学期。 要充分认识数学教改的艰巨性。
大力加强教学方法改革的研究和实验。努力加强数学教学中的实践环节。
指导思想应求基本一致,具体做法则要因校制宜、百花齐放、突出特色。要办出特色,必须。
7.数学专业该写什么毕业论文
1、论文题目:要求准确、简练、醒目、新颖。
2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)
3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。
4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。
5、论文正文:
(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
〈2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出-论点;
b.分析问题-论据和论证;
c.解决问题-论证与步骤;
d.结论。
6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息
所列参考文献的要求是:
(1)所列参考文献应是正式出版物,以便读者考证。
(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
8.求一篇大学数学论文
微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。
微分几何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以几何量作为曲线上点的坐标,从而开始了曲线的内在几何的研究。
十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并于1807年出版了它的《分析在几何学上的应用》一书,这是微分几何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分几何发展的因素。
1827年,高斯发表了《关于曲面的一般研究》的著作,这在微分几何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分几何发展经历了150年之后,高斯抓住了微分几何中最重要的概念和带根本性的内容,建立了曲面的内在几何学。其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。
1872年克莱因在德国埃尔朗根大学作就职演讲时,阐述了《埃尔朗根纲领》,用变换群对已有的几何学进行了分类。在《埃尔朗根纲领》发表后的半个世纪内,它成了几何学的指导原理,推动了几何学的发展,导致了射影微分几何、仿射微分几何、共形微分几何的建立。特别是射影微分几何起始于1878年阿尔方的学位论文,后来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。
随后,由于黎曼几何的发展和爱因斯坦广义相对论的建立,微分几何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。
微分几何学以光滑曲线(曲面)作为研究对象,所以整个微分几何学是由曲线的弧线长、曲线上一点的切线等概念展开的。既然微分几何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分几何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。
在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分几何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。
在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所谓“活动标形的方法”。对任意曲线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。
在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。
近代由于对高维空间的微分几何和对曲线、曲面整体性质的研究,使微分几何学同黎曼几何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分几何互相渗透,已成为现代数学的中心问题之一。
微分几何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分几何学的理论。
9.数学论文
去百度文库,查看完整内容>内容来自用户:精品教育数学家庭中的一对孪生兄弟――浅谈轴对称图形的应用摆银祥数学的世界真可谓是浩瀚无比。
由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。
我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。
有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。
轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。
当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。
在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。
一、生活当中的轴对称图形1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。
而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。
比如蜻蜓、飞蛾等。
转载请注明出处众文网 » 数学专业毕业论文(数学论文)