黄金分割毕业论文(求一篇关于《黄金分割》的论文)

1.求一篇关于《黄金分割》的论文

黄金分割点在现实生活中的应用论文

希腊的自然科学研究影响西方文化和文明的发展,他们重视分析、分解、假设、推理、推导、实验、验证等思维方式。这与东方重视整体、模糊处理、直觉综合、和谐大同、“仁者爱人”等思维方式和思想有明显的差别。胡适在“中国的文艺复兴”一文中说“当孟子在对人性的内在美德进行理论探讨时,欧几里德正在完善几何学,正在奠定欧洲的自然科学的基础。”这种说法不全面,东方的中华文明有过比西方更辉煌的历史,但在五百多年来,西方经历了继承希腊的文艺复兴和工业革命,使科学和技术快速发展,而中国因封建统治和闭关锁国等原因而衰落。现在应该撷取东西方文明的长处,把它们整合起来,创建中华夏兴。

“科学中的美和美的科学”,早期属于自然哲学,自古希腊人开始研究,至今约有2500年。古希腊人喜欢抽象研究。抽象研究又分为逻辑推理研究和形象推理研究,后者所用的工具有直尺和圆规。代数和平面几何为两者的典型代表。

曾提出这样一个问题:“一根棍从哪里分割最为美妙?”答案是:“前半段与后半段之比应等于后半段与全长之比”。设全长为1,后半段为x,此式即成为(1-x):x=x:1,也就是X2+X-1=0。其解为:。棍内分割只能取正值,此值就是著名的黄金分割比值G, G=0.618033988≈0.618。而且G(1+G)=1,即G和(1+G)互为倒数。

偏有一些古希腊人想用形象方法解决黄金分割问题,并获得漂亮的结果。欧几里德(约公元前330-257年)总结了前人的经验和研究成果,编著了《几何原理》十三卷。这是世界上最早用公理方法叙述的数学著作。其中所载的黄金分割几何问题已引起广泛的兴趣,在科学、艺术、建筑、技术各领域有着广泛的应用,哲学家和美学家也曾反复讨论,不断有文章发表。

自然界的形成、运行、演化、生长、繁衍、消亡等都是有规律的,有些物体可以直接感到自然美,但更多的物体令人迷惑不解。我们深信“天道崇美”,但需要人去探究,揭露其规律,使人感受到深层次的自然美和科学美。这就是“因人而彰”。黄金分割律,就是想梳理和探讨这种自然美和科学美。人有爱美的天性,而且人本身也是很精美的。“天道崇美,人性好美”有普遍性,无论是天然物品还是人工制品,形态的丑陋必然表明其功能的缺陷,而某些功能的完美,往往伴随着美的外形.

2.急求一篇有关黄金分割的论文2000字左右

黄金分割的美感 [摘要] 中世纪德国的数学家、天文学家开普勒曾经指出:“在几何学中有两件瑰宝:一是毕达哥拉斯定理,另一个是黄金分割率。”

黄金分割这个名词现在已经被越来越多的人所知。黄金分割这个数学中的名词已经不在神秘。

它被运用在各种各样的方面。大到建筑、美术、摄影,到处都有它的身影。

现在我就对黄金分割美感展开具体的分析与研究。什么是黄金分割、黄金分割的发现历史、黄金分割的美感与应用,在本文中会一一提到。

一、什么是黄金分割 什么是黄金分割?或许大多数人只知道0.618这个数字。但是,难道黄金分割就只有这些吗?黄金分割﹝Golden Section﹞是一种数学上的比例关系。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。把一条线段分成两段,使其中较大的一段是原线段与较小一段的比例中项,叫做把这条线段黄金分割. 如图:AC/BC=AB/AC,则图中C点就为黄金分割点。

取AB=L,AC=x,因为AC2=AB*BC,所以x2=(L-x)*L,即x2+xL-L2=0,解得x= 在黄金分割线段的基础上,还有一种矩形叫做黄金矩形。上图中,以AC为长,BC为宽,作出的长方形既黄金矩形。

凡是符合这种比例分割的任何物体和对象,都具有很好的使用价值和美学特征。毕达哥拉斯曾把“0.618”这个数誉为人间最精巧的比例,哪里有0.618,那里就闪烁着美。

二、黄金分割的发现 黄金分割是古希腊哲学家毕达哥拉斯发现。一天,毕达哥拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,便站在那里仔细聆听,似乎这声音中隐匿着什么秘密。

他走进作坊,拿出一把尺量了一下铁锤和铁砧的尺寸,发现它们之间存在着一种十分和谐的关系。回到家里,毕达哥拉斯拿出一根线,想将它分为两段。

怎样分才最好呢?经过反复比较,他最后确定1:0.618的比例截断最优美。后来,德国的美学家泽辛把这一比例称为黄金分割律。

这个规律的意思是,较大部分与整体这个比等于较小部分与较大部分之比。无论什么物体、图形,只要它各部分的关系都与这种分割法相符,这类物体、图形就能给人最悦目、最美的印象。

三、黄金分割的美感与应用:黄金分割律的美感探究首先,表现在它的形式美感上。19世纪后期,德国的心理学家古斯塔夫•费希纳(Gustav fechner)做了一个实验,其实验测量各种矩形人造物,其结果,他发现大部分人更喜爱边长比例接近于黄金分割律的矩形,这从一个侧面说明了黄金比例图形具有一符合人体标准的视觉愉悦性。

其次,不乏生理与心理原因。1、生理原因科学研究表明,人的双眼视域是两个不同心的圆所围成的总区域,如若以一眼的正视时的中心作为一分割点去分割整个双眼视域的长,得出的正是一黄金分割的比例。

所以,这个视域正是视觉感觉舒适的区域,这也可能正是黄金分割律美感的生理缘由。深层去追溯,可以用哲学家荣格所说的集体无意识的概念去解释和溯源:因为黄金分割律可能暗合人类的一种先天视觉识别能力的积淀。

就是说,在大自然长期发展过程中,由于人类周围的环境,各种各样的动物和植物的形式和式样,他们都蕴含了这一形式比例的生物规律,这一规律长期作用着人类的视觉系统,因而大自然在潜移默化中业已决定了人类的这种“黄金”视觉愉悦性(例如,花和叶的器官是由于其螺旋上升式生长,从而保证了叶与叶之间不会重合,下面的叶片正好在从上面叶片间漏下阳光的空隙地方,这是采光面积最大的排列方式。也因而,沿对数螺旋按圆的黄金分割盘旋而生,是叶片排列的最优良选择。

辐射对称的花及螺旋排列的果,它们在数学上也符合黄金分割的规律。这应该是一种进化论的“自然选择”吧。)

其实,人类其本身的大部分形体比例也是符合黄金分割律的比例分割的。

古希腊哲学家普罗泰格拉曾说“人是万物的尺度”就隐含了人是自然界这种规律的造物。2、黄金比例美感的心理原因众所周知,平衡是大自然的一种规律和状态。

在物理学中,据热力学推导出的一定律是:世间一切物理运动都可以被看作是趋向平衡的活动。同时,在心理学领域,格式塔心理学家们也得出:每一个心理活动领域都趋向于一种最简单、最平衡和最规则的组织形态。

所以,阿恩海姆推导弗洛伊德的观点,得出一结论:平衡是任何自我实现者所要达到的最终目标,也是他所要完成一切任务、解决一切问题的最终归宿。而黄金分割这一比例恰恰是达到人类视觉平衡和心理平衡的一最佳比例。

这可能就是其能获美感的深层心理原因。黄金分割律与设计在设计中,无论是古埃及的金字塔、古希腊的帕特农神殿、印度泰姬陵、法国巴黎圣母院还是中国故宫,中国的秦砖、汉瓦当都暗合黄金分割律。

其实,现今我们周围的世界,小到火柴盒、信封、邮票,大到一些工业产品、建筑房屋,都有黄金分割在其中的应用和体现。在而今的视觉传达设计中,已有很多设计门类巧妙的应用了黄金分割,取得了很好的效果。

从视觉的舒适程度,黄金分割是其最佳位置。在海报设计中,有扬•奇科尔德的《构成主义》、《职业摄影》海报和马克思•比尔的《形式艺术》海报。

这两人都是平面设计的杰出作。

3.求一篇关于《黄金分割》的论文

黄金分割点在现实生活中的应用论文

希腊的自然科学研究影响西方文化和文明的发展,他们重视分析、分解、假设、推理、推导、实验、验证等思维方式。这与东方重视整体、模糊处理、直觉综合、和谐大同、“仁者爱人”等思维方式和思想有明显的差别。胡适在“中国的文艺复兴”一文中说“当孟子在对人性的内在美德进行理论探讨时,欧几里德正在完善几何学,正在奠定欧洲的自然科学的基础。”这种说法不全面,东方的中华文明有过比西方更辉煌的历史,但在五百多年来,西方经历了继承希腊的文艺复兴和工业革命,使科学和技术快速发展,而中国因封建统治和闭关锁国等原因而衰落。现在应该撷取东西方文明的长处,把它们整合起来,创建中华夏兴。

“科学中的美和美的科学”,早期属于自然哲学,自古希腊人开始研究,至今约有2500年。古希腊人喜欢抽象研究。抽象研究又分为逻辑推理研究和形象推理研究,后者所用的工具有直尺和圆规。代数和平面几何为两者的典型代表。

曾提出这样一个问题:“一根棍从哪里分割最为美妙?”答案是:“前半段与后半段之比应等于后半段与全长之比”。设全长为1,后半段为x,此式即成为(1-x):x=x:1,也就是X2+X-1=0。其解为:。棍内分割只能取正值,此值就是著名的黄金分割比值G, G=0.618033988≈0.618。而且G(1+G)=1,即G和(1+G)互为倒数。

偏有一些古希腊人想用形象方法解决黄金分割问题,并获得漂亮的结果。欧几里德(约公元前330-257年)总结了前人的经验和研究成果,编著了《几何原理》十三卷。这是世界上最早用公理方法叙述的数学著作。其中所载的黄金分割几何问题已引起广泛的兴趣,在科学、艺术、建筑、技术各领域有着广泛的应用,哲学家和美学家也曾反复讨论,不断有文章发表。

自然界的形成、运行、演化、生长、繁衍、消亡等都是有规律的,有些物体可以直接感到自然美,但更多的物体令人迷惑不解。我们深信“天道崇美”,但需要人去探究,揭露其规律,使人感受到深层次的自然美和科学美。这就是“因人而彰”。黄金分割律,就是想梳理和探讨这种自然美和科学美。人有爱美的天性,而且人本身也是很精美的。“天道崇美,人性好美”有普遍性,无论是天然物品还是人工制品,形态的丑陋必然表明其功能的缺陷,而某些功能的完美,往往伴随着美的外形.

4.黄金分割论文

造型艺术中的一种分割法则。

亦称黄金分割率,简 称黄金率。它的分割方法为,将某直线段分为两部分,使 一部分的平方等于另一部分与全体之积,或使一部分对 全体之比等于另一部分对这一部分之比。

即:在直线段 AB上以点C分割,使(AC)2=CB*AB,或使AC∶AB=CB∶AC。 实践证明,它的比值是:□,约为1.618∶1 或1∶0.618,被称为黄金比。

黄金比最早是由古代希腊 人发现的,直到19世纪被欧洲人认为是最美、最谐调的 比例。黄金比广泛用于造型艺术中,具有美学价值,尤 其在工艺美术和工业设计的长和宽的比例(如书籍开本) 设计中容易引起美感,故称为黄金分割。

20世纪中,法 国建筑师Le科布西埃发现黄金比具有数列的性质。他将 其与人体尺寸相结合,提出黄金基准尺方案,并视之为 现代建筑美的尺度。

法国还产生了冠名为黄金分割画派 的立体主义画家集团,专注于形体的比例。 在实际运用中,黄金比多只采用近似值。

最简单的 方法是按照数列2、3、5、8、13、21……得出2:3、3∶ 5、5∶8、8∶13、13∶21等比值作为近似值。这种分割 方法亦用于优选法。

摘自 /z/q904298024.htm。

5.黄金分割的论文

904班卢昊荻数学小论文《黄金分割比例》1把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。

这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。

特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。

即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。

但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。

五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。

由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。

线段上有两个这样的点。 利用线段上的两黄金分割点,可作出正五角星,正五边形。

2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。

而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,。后二数之比2/3,3/5,4/8,8/13,13/21,。

近似值的。 黄金分割在文艺复兴前后,经过阿拉伯人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。

这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 其实有关"黄金分割",我国也有记载。

虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。

欧洲的比例算法是源于我国而经过印度由阿拉伯传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。

就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。

正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。 黄金分割〔Golden Section〕是一种数学上的比例关系。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。

发现历史 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。

德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。

黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。

确切值为根号5+1/2。

6.关于数学黄金分割的小论文500字

黄金分割漫谈 分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。

若C为线段AB的满足条件的分点,则可求得AC 约为 0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。

若用G来表示它,G 被称为黄金比或黄金分割数。黄金分割、黄金分割数都被冠以“黄金”二字,说明了它们的重要性与应用上的广泛性,同时也为它们平添了几分神秘的色彩。

著名天文学家开普勒称黄金分割是“几何学中的一大宝藏”,就让我们揭开它的神秘面纱,共同来开采一下这座宝藏吧! 寻踪探迹话名称由来 最早对中末比有所了解的大约可追溯到毕达哥拉斯学派。该学派对正五边形、正十边形都很熟悉,并且把“五角星”作为成员联络标记,而这些图形的作法与中末比是密切联系的。

如果相信毕达哥拉斯熟知正五边形与五角星的作图,那么可以推知他已掌握了中末比。古希腊著名的数学家、天文学家欧多克索斯最早对中末比做了系统的研究,他在深入探究五角星性质时,曾惊叹道:“中末比到底在这儿出现了!”对中末比的严格论述最早见于欧几里德的《几何原本》。

到中世纪以后,中末比被披上更神秘的外衣,渐渐笼上了一层神秘的色彩。 文艺复兴时期,中末比问题引起了人们广泛的注意。

1509年,意大利文艺复兴重要人物之一帕乔里出版《神圣的比例》一书。书中系统介绍了古希腊中外比,并称其为神圣比例。

他认为世间一切事物都须服从这一神圣比例的法则。开普勒称中末比为“比例分割”,他写道:“毕达哥拉斯定理和中末比是几何中的双宝,前者好比黄金,后者堪称珠玉。”

他是把黄金之喻给了毕达哥拉斯定理,而用珠玉来形容了中末比。最早正式在书中使用黄金分割这个名称的是欧姆(以欧姆定律闻名的G.S.欧姆之弟)。

在他1835年出版的第二版《纯粹初等数学》一书中首次使用了这一名称。到19 世纪以后,这一名称才逐渐通行起来,成为现在人们所熟知的名称。

挂一漏万谈奇妙性质 黄金分割数G有着许多有趣的性质。最引人注目的是它与斐波那契数列的关系。

斐波那契是中世纪著名的学者。他在《算盘书》一书中提出了一道有趣的“兔子生殖问题”,由此引出了一个奇妙数列: 1,2,3,5,8,13,21,34,55,89,144,…… 规律是:从第三项开始每一项是前两项之和。

后人称为斐波那契数列。它与黄金分割会有什么关系呢? 让我们计算一下斐波那契数列中每前一项与后一项之比,就会发现这个比值竟与黄金分割数G越来越接近,完全可以作为G的一阶、二阶……N阶近似。

多么奇妙啊!其实可以证明这些比值正是以G作为它们的极限。 中外比与斐波那契数列的这种内在联系,为它大添了光彩,也使它具有了一种特殊的神秘感与迷人的魅力,使后来的许多数学家为之倾倒。

抛砖引玉粗说影响及应用 黄金分割无论是在理论上,还是实际生活中都有着极其广泛而又非常简单的应用,从而也在历史上产生了巨大的影响。古代,中末比主要是作为作图的方法而使用。

到文艺复兴时期它又重新引起了当时人们的极大兴趣与注意,并产生了广泛的影响,得到了多方面的应用。如在绘画、雕塑方面,画家、雕塑家都希望从数学比例上解决最完美的形体,它的各部分的相互关系问题,以此作为科学的艺术理论用来指导艺术创造,来体现理想事物的完美结构。

著名画家达芬奇在《论绘画》一书中就相信:“美感完全建立在各部分之间神圣的比例关系上,各特征必须同时作用,才能产生使观众如醉如痴的和谐比例。”在这一时期,艺术家们自觉地被黄金分割的魅力所诱惑而使数学研究与艺术创作紧密地结合起来,并对后来形式美学与实验美学产生了巨大影响。

十九世纪,德国美学家蔡辛提出黄金分割原理且对黄金分割问题进行理论阐述,并认为黄金分割是解开自然美和艺术美奥秘的关键。他用数学比例方法研究美学,启发了后人。

德国哲学家、美学家、心理学家费希纳进行了实验美学的尝试,把黄金分割原理建立在广泛的心理学测试基础上,将美学研究与自然科学研究结合在一起,引起广泛的注意。直到本世纪50年代,实验美学的研究还十分活跃。

直到最近,黄金分割原理仍然是一个充满了神奇之谜的科学美学问题。如在晶体学的准晶体结构研究领域中,黄金分割问题重新引起了物理学家和数学家们的兴趣。

它的实际应用,也有很多。最广为人道的例子是优选学中的黄金分割法,它是美国的基弗于1953年首先提出的。

从1970年开始在我国推广并取得了很大的成绩。优选法的另一种方法――分数法,是取G的分数近似值,在实际中同样有着广泛应用。

真真假假道神秘传说 由于中末比具有各种独特的性质,随着它的影响越来越大,也就有了越来越多的关于它的传说。这些传说虚虚实实,令人扑朔迷离难辨真伪,但却一直为人们所津津乐道,广为流传。

有人研究得出黄金分割是人和动植物形态的一个结构原则。于是有了以下各种说法: 人体自身美,即人体最优美的身段遵循着G这个黄金分割比。

据说在人们并未认识黄金分割之前制造的美的物品竟都恰好与黄金律暗合。如著名的。

7.关于数学黄金分割的小论文500字

黄金分割漫谈 分已知线段为两部分,使其中一部分是全线段与另一部分的比例中项,这就是在中学几何课本中提到的黄金分割问题。

若C为线段AB的满足条件的分点,则可求得AC 约为 0.618AB。这个分割在课本上被称作黄金分割,我们有时也可说是将线段分成中末比、中外比或外内比。

若用G来表示它,G 被称为黄金比或黄金分割数。黄金分割、黄金分割数都被冠以“黄金”二字,说明了它们的重要性与应用上的广泛性,同时也为它们平添了几分神秘的色彩。

著名天文学家开普勒称黄金分割是“几何学中的一大宝藏”,就让我们揭开它的神秘面纱,共同来开采一下这座宝藏吧! 寻踪探迹话名称由来 最早对中末比有所了解的大约可追溯到毕达哥拉斯学派。该学派对正五边形、正十边形都很熟悉,并且把“五角星”作为成员联络标记,而这些图形的作法与中末比是密切联系的。

如果相信毕达哥拉斯熟知正五边形与五角星的作图,那么可以推知他已掌握了中末比。古希腊著名的数学家、天文学家欧多克索斯最早对中末比做了系统的研究,他在深入探究五角星性质时,曾惊叹道:“中末比到底在这儿出现了!”对中末比的严格论述最早见于欧几里德的《几何原本》。

到中世纪以后,中末比被披上更神秘的外衣,渐渐笼上了一层神秘的色彩。 文艺复兴时期,中末比问题引起了人们广泛的注意。

1509年,意大利文艺复兴重要人物之一帕乔里出版《神圣的比例》一书。书中系统介绍了古希腊中外比,并称其为神圣比例。

他认为世间一切事物都须服从这一神圣比例的法则。开普勒称中末比为“比例分割”,他写道:“毕达哥拉斯定理和中末比是几何中的双宝,前者好比黄金,后者堪称珠玉。”

他是把黄金之喻给了毕达哥拉斯定理,而用珠玉来形容了中末比。最早正式在书中使用黄金分割这个名称的是欧姆(以欧姆定律闻名的G.S.欧姆之弟)。

在他1835年出版的第二版《纯粹初等数学》一书中首次使用了这一名称。到19 世纪以后,这一名称才逐渐通行起来,成为现在人们所熟知的名称。

挂一漏万谈奇妙性质 黄金分割数G有着许多有趣的性质。最引人注目的是它与斐波那契数列的关系。

斐波那契是中世纪著名的学者。他在《算盘书》一书中提出了一道有趣的“兔子生殖问题”,由此引出了一个奇妙数列: 1,2,3,5,8,13,21,34,55,89,144,…… 规律是:从第三项开始每一项是前两项之和。

后人称为斐波那契数列。它与黄金分割会有什么关系呢? 让我们计算一下斐波那契数列中每前一项与后一项之比,就会发现这个比值竟与黄金分割数G越来越接近,完全可以作为G的一阶、二阶……N阶近似。

多么奇妙啊!其实可以证明这些比值正是以G作为它们的极限。 中外比与斐波那契数列的这种内在联系,为它大添了光彩,也使它具有了一种特殊的神秘感与迷人的魅力,使后来的许多数学家为之倾倒。

抛砖引玉粗说影响及应用 黄金分割无论是在理论上,还是实际生活中都有着极其广泛而又非常简单的应用,从而也在历史上产生了巨大的影响。古代,中末比主要是作为作图的方法而使用。

到文艺复兴时期它又重新引起了当时人们的极大兴趣与注意,并产生了广泛的影响,得到了多方面的应用。如在绘画、雕塑方面,画家、雕塑家都希望从数学比例上解决最完美的形体,它的各部分的相互关系问题,以此作为科学的艺术理论用来指导艺术创造,来体现理想事物的完美结构。

著名画家达芬奇在《论绘画》一书中就相信:“美感完全建立在各部分之间神圣的比例关系上,各特征必须同时作用,才能产生使观众如醉如痴的和谐比例。”在这一时期,艺术家们自觉地被黄金分割的魅力所诱惑而使数学研究与艺术创作紧密地结合起来,并对后来形式美学与实验美学产生了巨大影响。

十九世纪,德国美学家蔡辛提出黄金分割原理且对黄金分割问题进行理论阐述,并认为黄金分割是解开自然美和艺术美奥秘的关键。他用数学比例方法研究美学,启发了后人。

德国哲学家、美学家、心理学家费希纳进行了实验美学的尝试,把黄金分割原理建立在广泛的心理学测试基础上,将美学研究与自然科学研究结合在一起,引起广泛的注意。直到本世纪50年代,实验美学的研究还十分活跃。

直到最近,黄金分割原理仍然是一个充满了神奇之谜的科学美学问题。如在晶体学的准晶体结构研究领域中,黄金分割问题重新引起了物理学家和数学家们的兴趣。

它的实际应用,也有很多。最广为人道的例子是优选学中的黄金分割法,它是美国的基弗于1953年首先提出的。

从1970年开始在我国推广并取得了很大的成绩。优选法的另一种方法――分数法,是取G的分数近似值,在实际中同样有着广泛应用。

真真假假道神秘传说 由于中末比具有各种独特的性质,随着它的影响越来越大,也就有了越来越多的关于它的传说。这些传说虚虚实实,令人扑朔迷离难辨真伪,但却一直为人们所津津乐道,广为流传。

有人研究得出黄金分割是人和动植物形态的一个结构原则。于是有了以下各种说法: 人体自身美,即人体最优美的身段遵循着G这个黄金分割比。

据说在人们并未认识黄金分割之前制造的美的物品竟都恰好与黄金律暗合。如著名的。

8.数学中的黄金分割——课题研究的论文

所谓“黄金分割法”最早是由古希腊毕达哥拉斯学派所发现, 其比值0.618即被称为“黄金数”。

有趣的是人们后来发现,0. 618竟是自然界生物(特别是人类)在亿万年进化中演绎出来的一 个“神数”,广泛地适用于人类生活的许多领域 数值: 黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。

确切值为(√5-1)/2 ,即黄金分割数。 黄金分割数是无理数,前面的1024位为: 1.6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 2353693179 3180060766 7263544333 8908659593 9582905638 3226613199 2829026788 0675208766 8925017116 9620703222 1043216269 5486262963 1361443814 9758701220 3408058879 5445474924 6185695364 8644492410 4432077134 4947049565 8467885098 7433944221 2544877066 4780915884 6074998871 2400765217 0575179788 3416625624 9407589069 7040002812 1042762177 1117778053 1531714101 1704666599 1466979873 1761356006 7087480710 1317952368 9427521948 4353056783 0022878569 9782977834 7845878228 9110976250 0302696156 1700250464 3382437764 8610283831 2683303724 2926752631 1653392473 1671112115 8818638513 3162038400 5222165791 2866752946 5490681131 7159934323 5973494985 0904094762 1322298101 7261070596 1164562990 9816290555 2085247903 5240602017 2799747175 3427775927 7862561943 2082750513 1218156285 5122248093 9471234145 1702237358 0577278616 0086883829 5230459264 7878017889 9219902707 7690389532 1968198615 1437803149 9741106926 0886742962 2675756052 3172777520 3536139362 1076738937 6455606060 5922。

编辑本段|回到顶部发现历史: 人们认为,黄金分割作图与正五边形、正十边形和五角星形的作图有关——特别是由五角星形作图的需要引起的。 五角星形是一种很耐人寻味的图案,世界许多国家国旗上的“星”都画成五角形。

现今有将近40个国家(如中国、美国、朝鲜、土耳其、古巴等等)的国旗上有五角星。为什么是五角而不是其他数目的角?也许是古代留下来的习惯。

五角星形的起源甚早,现在发现最早的五角星形图案是在幼发拉底河下游马鲁克地方(现属伊拉克)发现的一块公元前3200年左右制成的泥板上。 古希腊的毕达哥拉斯学派用五角星形作为他们的徽章或标志,称之为“健康”。

可以认为毕达哥拉斯已熟知五角星形的作法,由此可知他已掌握了黄金分割的方法。 现在人一般认为,黄金分割是由公元前6世纪的毕达哥拉斯发现的。

系统论述黄金分割的最早记载是欧几里得的《几何原本》,在该书第四卷中记述了用黄金分割作五边形、十边形的的问题,在第二卷第11节中详细讲了黄金分割的计算方法,其中写道:“以点h按中末比截线段ab,使ab∶ah=ah∶hb”将这一式子计算一下:设 ab= 1, ah=x,则上面等式18,点h是ab的黄金分割点, 0.618叫做“黄金数”。 在《几何原本》中把它称为“中末比”。

直到文艺复兴时期,人们重新发现了古希腊数学,并且发现这种比例广泛存在于许多图形的自然结构之中,因而高度推崇中末比的奇妙性质和用途。意大利数学家帕乔利称中末比为“神圣比例”;德国天文学家开普勒称中末比为“比例分割”,并认为勾股定理“好比黄金”,中末比“堪称珠玉”。

最早在著作中使用“黄金分割”这一名称的是德国数学家m·欧姆,他是发现电学的欧姆定律的g·s·欧姆的弟弟。他在自己的著作《纯粹初等数学》(第二版,1835)中用了德文字:“der goldene schnitt(黄金分割)”来表述中末比,以后,这一称呼才逐渐流行起来。

编辑本段|回到顶部黄金分割法的诸多应用: 在数学方面的应用: 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,取其前三位数字的近似值是0.618。

由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。

让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。

菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n-1)-→0.618…。

由于菲波那契数都是。

9.求一篇数学论文,关于黄金分割的,不求太深奥,大概的简绍就行

本学期我们学习了关于黄金分割的知识,我们深深地感到这黄金分割的美丽,也沉醉于其中. 关于黄金分割的起源大多认为来自毕达哥斯拉,据说在古希腊,有一天毕达哥斯拉走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。

他发现铁匠打铁节奏很有规律,这个声音的比列被毕达哥斯拉用数理的方式表达出来。被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法“。

在金字塔建成1000年后才出现毕达哥斯拉定律,可见这很早既存在。只是不知这个谜底。

把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是5^/2-1/2或二分之根号五减一,取其前三位数字的近似值是0.618。

由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。

黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。

应用时一般取0.618 ,就像圆周率在应用时取3.14一样。 黄金分割的无穷魅力再许多伟大的作品中都有体现.例如:,达·芬奇的《维特鲁威人》符合黄金矩形。

《蒙娜丽莎》的脸也符合黄金矩形,《最后的晚餐》同样也应用了该比例布局。 黄金分割的应用十分广泛,不仅仅体现在艺术中,还体现在古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,黄金分割的近似值0.618在生活中可以说是无处不在. 在人体结构上,脐至脚底与头顶至脐之比;躯干长度与臀宽之比;下肢长度与上肢长度之比,均近似于0.618。

而且,越是接近于这个值,整个形体就越匀称,越令人觉得完美。人在环境气温22℃-24℃下生活感到最适宜.因为人体的正常体温是36℃-37℃,这个体温与0.618的乘积恰好是22.4℃-22.8℃,而且在这一环境温度中,人体的生理功能、生活节奏等新陈代谢水平均处于最佳状态。

再如,营养学中强调,一餐主食中要有六成粗粮和四成细粮的搭配进食,有益于肠胃的消化与吸收,避免肠胃病。这也可纳入饮食的0.618规律之列。

抗衰老有生理与心理抗衰之分,哪个为重?研究证明,生理上的抗衰为四,而心理上的抗衰为六,也符合黄金分割律。充分调动与合理协调心理和生理两方面的力量来延缓衰老,可以达到最好的延年益寿的效果。

一天合理的生活作息也符合0.618的分割,24小时中,2/3时间是工作与生活,1/3时间是休息与睡眠;在动与静的关系上,究竟是"生命在于运动",还是"生命在于静养"?从辩证观和大量的生活实践证明,动与静的关系同一天休息与工作的比例一样,动四分,静六分,才是最佳的保健之道. 动静:从辩证观点看,动和静是一个0.618比例关系,大致四分动六分静才是较佳养生之法。饮食:医学专家分析后还发现,饭吃六七成饱的人几乎不生胃病;摄入的饮食以六分粗粮、四分精食为适宜。

从黄金分割律看,结婚的最佳季节是一年12个月的0.618处,约在7月底至8月底。医学研究已表明,秋季是人的免疫力最佳的黄金季节。

因为7月至8月时人体血液中淋巴细胞最多,能生成大量的抵抗各种微生物的淋巴因子,此时人的免疫力强.较少小户型以其"低总价、低首付、低月供",把众多刚刚踏入社会的年轻人吸引为有房一族。虽然市场上对小户型的需求很热烈,但也同样具有投资风险。

如何进行小户型投资?市场时兴一套有趣的"黄金分割论".时间分割因为工作时间与居家时间之比正好构成一个黄金分割,即0.618比0.382,所以专家认为,最有价值的地段可能是工作与社区之间的黄金分割点.尺度分割小户型因其小,面积更要精打细算.在小户型越来越热的过程中,市场有一个趋势,即户型越小越好。但绝对的小既不符合居住者的正常生活需求,也绝对不会是潮流。

新消费或投资趋势表明,小户型在面积大小上也存在黄金分割率.在30至80平方米之间,有一个黄金分割数,正好是50余平方米。所以,市场上50余平方米的小户型热卖度超过了其他规格.空间主要是卧室与起居,30平方米根本无法细分任何功能区,难以满足高品质居家生活。

而50多平方米是功能上黄金分割区的最小面积,即可分出30平方米的主体空间和20平方米的配套空间,解决独立厨卫、阳台、储藏等各个功能.因此,根据"黄金分割论"选择的小户型应该是既节省户型面积,减少投资总额,同时又能满足空间上的审美和功能需求,保证居住者的生活品质与居家情趣。 黄金分割比在未发现之前,在客观世界中就存在的,只是当人们揭示了这一奥秘之后,才对它有了明确的认识。

当人们根据这个法则再来观察自然界时,就惊奇的发现原来在自然界的许多优美的事物中的能看到它,如植物的叶片、花朵,雪花,五角星……许多动物、昆虫的身体结构中,特别是人体中更是有着丰富的黄金比的关系。当人们认识了这一自然法则之后,就被广泛地应用于人类。

10.数学关于黄金比例的论文怎么写

对于“黄金分割”大家应该不熟悉吧! 正如古希腊公元前6世纪,毕达哥拉斯研究了正五边形和定期10的映射坤,因此现代数学家毕达哥拉斯推理触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克斯对这个问题的第一次系统研究,并建立理论的比例。 大约在公元前300年,欧几里得写道,“几何”研究成果的吸收欧多克斯,进一步系统论述了黄金分割,成为黄金分割上最早的工程。

在中世纪,黄金地段,已上提出的神秘外衣,意大利表示,过去数帕乔利神圣的百分比率,并为此写专书。德国天文学家开普勒称作为神圣分裂的黄金地段。

到19世纪,黄金的名字逐渐通过。 Fibonacci数有许多有趣的特性,人类也是非常广泛的实际应用。

最著名的例子是在黄金分割法首选的研究报告或0。618法是由美国数学家基弗于1953年首次提出的决定,并在中国70年来推广。

也许在科学和艺术,我们学到了很多东西0。 618的表现,但你没有听说,与连天火0。

618,浓烟弥漫,Xuerouhengfei一个可怕的,残酷的战场也有在军队结下了不解之缘,也显示其伟大和神秘的力量?拿破仑激烈的和雄心勃勃的一代大可能不会想到他的命运如何将紧密联系在一起的0。618。

在1812年6月,这是今年在莫斯科,凉爽宜人的气候大部分夏天未能消除后,波罗底诺,在这个时候拿破仑战役的有生力量,俄罗斯,率领他的军队进入莫斯科。这一次,他踌躇满志,然而,不可一世。

他不知道他的天赋和运气此时也一点点从他消失,他的生活,事业的一个转折点,是一次巅峰。 后来,法国将在雪汾阳是,胡说八道在昏暗离开莫斯科。

为3个月,两个月的盛极而衰胜利走向胜利,从时间的角度来看,在莫斯科的法国皇帝俯瞰通过肆虐时,只脚加强对黄金分割线火焰的城市。 帕蒂农神庙是古希腊的完美世界著名的建筑,其高度和宽度的比例是0。

618。建筑师们发现,按照这个比例来设计皇宫更加宏伟的宫殿,美丽,设计别墅,别墅将更加舒适和美观。

即使如果设计将更加协调和非常愉快的黄金矩形窗口。 有趣的是,在自然世界的数字和人民生命无处不在:人的肚脐上,一个人的膝盖黄金分割点是体长的黄金分割点,肚脐的脚。

大多数门窗全长度比例为0。618 。

有些植物茎,两个相邻的角度叶柄是137度28',恰好是划分为两个1:0。618圆周。

半径之间的角度。

据研究发现,这种植物通风和采光最好的角度。黄金分割和人民都非常接近。

地球表面的纬度范围为0 - 90 °,其中黄金,然后34。 38 ° - 55。

62 °是地球的金腰带。在平均气温而言,年日照时数,年降水量,相对湿度等都是最好的地区适合人类生活。

事有凑巧,该地区几乎涵盖了所有世界上发达国家。 观察比生命更,你会发现生活美好的数学。

黄金分割毕业论文

转载请注明出处众文网 » 黄金分割毕业论文(求一篇关于《黄金分割》的论文)

资讯

社火脸谱毕业论文(社火的社火脸谱)

阅读(81)

本文主要为您介绍社火脸谱毕业论文,内容包括社火的社火脸谱,关于京剧脸谱的论文,民间社火脸谱有何称颂之处。在整个社火的表演程序中,化妆是神圣而关键的一步,而脸谱更是社火灵在的标志和内容的陈述。因此社火脸谱亦是这一古老行为在千百年传

资讯

船舶毕业论文总结(关于船舶的毕业论文)

阅读(93)

本文主要为您介绍船舶毕业论文总结,内容包括关于船舶的毕业论文,船舶工程技术的毕业论文,速求航海类毕业论文3000字以上。基于SWOT分析的我国国有船舶供应企业发展战略 摘要:本文通过对国有船舶供应企业的SWOT分析,提出大多国有船舶供应企业

资讯

交大毕业论文(交通专业的毕业论文写什么好)

阅读(81)

本文主要为您介绍交大毕业论文,内容包括交通专业的毕业论文写什么好,交通专业的毕业论文写什么好,大学本科毕业论文的要求和步骤(要详细点)是什么。其实交通这方面还是有很多的题目可选,你们老师就没有给你们大致方向吗?不过关键还是要你怎么选

资讯

毕业论文装订后是不是就代表过了(论文写完了用装订么)

阅读(91)

本文主要为您介绍毕业论文装订后是不是就代表过了,内容包括毕业论文定稿后装订好上交是不是就能通过了,本科毕业论文装订是怎么一回事啊答辩完之后还事儿呢,论文写完了用装订么都是什么样的谢谢了,大神帮忙啊。一般的大学毕业论文(比如本科

资讯

实验性论文毕业答辩ppt(毕业论文答辩的PPT应该包含哪些内容)

阅读(98)

本文主要为您介绍实验性论文毕业答辩ppt,内容包括毕业论文答辩的PPT应该包含哪些内容,创新实验答辩的ppt怎么做,毕业论文答辩时,如何做ppt。首先,PPT封面应该有:毕设题目、答辩人、指导教师以及答辩日期;2、其次,需要有一个目录页来清楚的阐述

资讯

毕业论文档案袋顺序(大学毕业档案袋里都有些什么资料)

阅读(86)

本文主要为您介绍毕业论文档案袋顺序,内容包括大学毕业档案袋里都有些什么资料,毕业论文跟放档案放一起吗,大学生毕业后档案袋里都有什么啊。每一位大学毕业生的档案中应该包括下列材料 一.高中阶段材料 (1)高中毕业生登记表 (2)高中生学籍卡

资讯

女装营销策略毕业论文(毕业论文,服装营销的几点感想如何写)

阅读(94)

本文主要为您介绍女装营销策略毕业论文,内容包括毕业论文某服装企业的品牌营销策略分析该从哪些方面开始研究,,毕业论文,“服装营销的几点感想”如何写,我要写服装专卖店视觉营销策略的论文我要写服装专卖店视觉营销策。《服装设计毕业论文

资讯

化学本科毕业论文思维导图(化学思维导图怎么画)

阅读(103)

本文主要为您介绍化学本科毕业论文思维导图,内容包括化学思维导图怎么画,浅谈思维导图在初中化学教学中应用的几种类型,化学必修一思维导图。最好去网上买一本《思维导图》或《启动大脑》。不然去http://old.blog.edu.cn/user2/53953/archi

资讯

西北大学毕业论文二辩(论文二辩容易过吗)

阅读(100)

本文主要为您介绍西北大学毕业论文二辩,内容包括毕业答辩进入了二辩,二辩的一般形式是怎么样的如果过了跟一辩,二辩稿怎么写,关于本科毕业论文二辩通过率。100%过 除非挂科多或者表现非常不讨专业老师喜欢的会挂 摘要中应排除本学科领域已

资讯

内向的人毕业论文答辩难吗(毕业论文答辩难么)

阅读(121)

本文主要为您介绍内向的人毕业论文答辩难吗,内容包括毕业论文答辩难么如果没过怎么办,内向的人怎样做好答辩,论文答辩难吗最后是不是都能过。1.论文答辩是否难过除了自身对自己论文的了解程度有关,还跟主持答辩的老师有关系,您可以提前跟同专

资讯

浙大硕士几毕业论文(报考浙江大学的在职研究生要毕业几年)

阅读(69)

本文主要为您介绍浙大硕士几毕业论文,内容包括我在浙大读了3年研究生,临近毕业论文写了3/4,如果现在突然不要,报考浙江大学的在职研究生要毕业几年我本科毕业一年,浙江大学自考毕业论文有效年限。这个专业不同对毕业年限要求也不同,比如报考

资讯

化学学科教学毕业论文(关于化学方面的毕业论文怎么些)

阅读(73)

本文主要为您介绍化学学科教学毕业论文,内容包括关于化学方面的毕业论文怎么些,化学论文怎么写,如何在初中化学教学中培养学生探究能力毕业论文急急急。二、娓娓动听的谈心,科学精辟的分析,纠正学生的偏见,解决学生的压力,鼓足学生的信心,提高学

资讯

社火脸谱毕业论文(社火的社火脸谱)

阅读(81)

本文主要为您介绍社火脸谱毕业论文,内容包括社火的社火脸谱,关于京剧脸谱的论文,民间社火脸谱有何称颂之处。在整个社火的表演程序中,化妆是神圣而关键的一步,而脸谱更是社火灵在的标志和内容的陈述。因此社火脸谱亦是这一古老行为在千百年传

资讯

船舶毕业论文总结(关于船舶的毕业论文)

阅读(93)

本文主要为您介绍船舶毕业论文总结,内容包括关于船舶的毕业论文,船舶工程技术的毕业论文,速求航海类毕业论文3000字以上。基于SWOT分析的我国国有船舶供应企业发展战略 摘要:本文通过对国有船舶供应企业的SWOT分析,提出大多国有船舶供应企业

资讯

交大毕业论文(交通专业的毕业论文写什么好)

阅读(81)

本文主要为您介绍交大毕业论文,内容包括交通专业的毕业论文写什么好,交通专业的毕业论文写什么好,大学本科毕业论文的要求和步骤(要详细点)是什么。其实交通这方面还是有很多的题目可选,你们老师就没有给你们大致方向吗?不过关键还是要你怎么选

资讯

毕业论文装订后是不是就代表过了(论文写完了用装订么)

阅读(91)

本文主要为您介绍毕业论文装订后是不是就代表过了,内容包括毕业论文定稿后装订好上交是不是就能通过了,本科毕业论文装订是怎么一回事啊答辩完之后还事儿呢,论文写完了用装订么都是什么样的谢谢了,大神帮忙啊。一般的大学毕业论文(比如本科

资讯

实验性论文毕业答辩ppt(毕业论文答辩的PPT应该包含哪些内容)

阅读(98)

本文主要为您介绍实验性论文毕业答辩ppt,内容包括毕业论文答辩的PPT应该包含哪些内容,创新实验答辩的ppt怎么做,毕业论文答辩时,如何做ppt。首先,PPT封面应该有:毕设题目、答辩人、指导教师以及答辩日期;2、其次,需要有一个目录页来清楚的阐述

资讯

毕业论文档案袋顺序(大学毕业档案袋里都有些什么资料)

阅读(86)

本文主要为您介绍毕业论文档案袋顺序,内容包括大学毕业档案袋里都有些什么资料,毕业论文跟放档案放一起吗,大学生毕业后档案袋里都有什么啊。每一位大学毕业生的档案中应该包括下列材料 一.高中阶段材料 (1)高中毕业生登记表 (2)高中生学籍卡

资讯

河北大学博士毕业论文要求(各高校博士毕业对论文有哪些要求)

阅读(105)

本文主要为您介绍河北大学博士毕业论文要求,内容包括各高校博士毕业对论文要求,博士论文有什么要求,博士毕业生条件是什么。为了让各位博士生导师和博士生对2006年起毕业的博士生SCI论文要求有进一步的明确,特将有关规定重申如下: 2006年起毕