1.毕业论文数据分析怎么描述
数据分析可以分成两部分,一部分是对分析过程及分析结果的描述,另一部分是结合专业知识对结果进一步分析,为什么会出现这样的结果。
如果完全没有思路推荐使用spssau,里面的结果包括智能文字分析可以提供一些思路。
2.如何对一份数据进行分析 论文 知乎
汇调研(专业的第三方市场调研服务提供商)
先说说写一份好的数据分析报告的重要性,很简单,因为分析报告的输出是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。
一份好的分析报告,有以下一些要点:
首先,要有一个好的框架
跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望;
第二,每个分析都有结论,而且结论一定要明确
如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻找或者印证一个结论才会去做分析的,所以千万不要忘本舍果;
第三,分析结论不要太多要精
如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门槛,如果别人看到问题太多,结论太繁,不读下去,一百个结论也等于0;
第四,分析结论一定要基于紧密严禁的数据分析推导过程
不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了;
第五,好的分析要有很强的可读性
这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,那是因为整个分析过程是你做的,别人不一定如此了解,要知道阅者往往只会花10分钟以内的时间来阅读,所以要考虑你的分析阅读者是谁?他们最关心什么?你必须站在读者的角度去写分析邮件;
第六,数据分析报告尽量图表化
这其实是第四点的补充,用图表代替大量堆砌的数字会有助于人们更形象更直观地看清楚问题和结论,当然,图表也不要太多,过多的图表一样会让人无所适从;
第七,好的分析报告一定要有逻辑性
通常要遵照:1、发现问题–2、总结问题原因–3、解决问题,这样一个流程,逻辑性强的分析报告也
3.以大数据如何改变我们的生活写1500字论文
"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
"大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。
最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。 从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。
那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢? 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。 大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
当下我国大数据研发建设应在以下四个方面着力 一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。
二是规范一套建设标准。没有标准就没有系统。
应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。 三是搭建一个共享平台。
数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。
四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。
4.“浅谈统计在生活中的应用”论文
统计学研究的重点领域 1.统计理论与方法的创新研究 统计学的生命力就在于应用,应用为统计学的发展赋予活力。
“十五”期间异方差性时间序列问题研究、离散多元统计分析研究、数据挖掘理论研究、异常数据诊断的研究、非参数理论与方法的研究、抽样与非抽样误差理论的研究等将是统计理论研究的热点。知识经济、新经济对统计理论与方法提出更高要求,如何适应电子商务时代统计数据的收集,空间遥感技术的运用等都为统计理论提出新挑战,统计工作者必须创新出适合各种复杂类型数据的统计方法才能适应实践的需求。
2.开展空间统计学理论与应用的研究 空间统计学是近几年统计学发展的一个新领域,主要指运用遥感技术进行国土资源的测定,农业和林业、海洋生物、环境生态的观测。这种观测数据通常表现为网络形式,而且这些数据受到大气效应、观测工具等诸多因素的影响。
空间统计学的应用在于,针对这种特殊的数据,研究误差控制、数据处理、模型建立、统计推断。这将是统计学研究的新领域。
计算机技术的发展对统计学发展影响的研究 信息技术与计算机技术的发展是推动新经济发展的主要动力。可以断言,没有计算机的发展就没有统计方法的普遍有效应用。
计算机技术的飞速发展为统计学方法的应用带来挑战和发展的机遇。统计数据的收集如何有效借助网络技术,统计调查方法如何适应现代信息技术,统计数据处理如何深入都将成为研究的热点问题。
3.生命科学与生物技术中统计方法的应用研究 21世纪是生命科学的世纪,人类不久将完全揭示人类基因排序。19世纪中叶基因学说的创立,就是依赖于统计推断技术,21世纪生命科学中将有大量的相关研究要借助统计方法与技术,这个领域的学者将大有作为。
21世纪医学领域的科技创新,将使许多不治之症得到解决,生物制药将在医学领域大放异彩,统计学方法在生物制药技术中的广泛应用将是不争的事实。美国辉瑞制药公司每年投入50亿美金用于研究发展,在美的生物统计人员极易找到高薪的工作就足以说明这一领域的广阔前景。
4.国家经济安全与金融、保险领域的应用研究 国家的经济安全及其金融危机的防范问题是中国改革开放中必须高度重视的问题。国家经济安全、金融危机的预警系统的研究是与统计学方法紧密联系的研究热点,投资项目的风险管理研究也将依赖统计学者去研究解决。
保险产品的精算理论与实践在“九五”期间得到一定的进展,为这一领域的深入发展奠定了基础,如何将发达国家保险精算的理论与中国保险业实际相结合值得深入研究,尤其是保险精算方法向社会保障领域延伸的研究是中国国情赋予给这个领域的迫切任务。 5.政府统计数据质量的进一步研究 政府统计数据的质量在“九五”期间得到国人的普遍关注。
不仅国家哲学社科基金设立重点研究课题,几乎各地方政府也设专项研究,发表的论文已有近百篇。然而这方面的研究还有待深入,不仅从制度上约束、控制数据的可靠性,从检测、验证的方法上还需进一步探讨。
有的重点课题已在检验方法上有所突破,但如何具体与中国政府实际数据紧密结合,实施这些方法还须加大力度进行研究和实践。 6.统计学在社会、人口、教育、环境等领域的应用研究 社会的发展、人口的控制、教育结构的调整与发展、环境的保护等领域存在着大量急待研究的问题,统计学方法是定性与定量研究的有力工具。
统计学方法在这些领域将会有广阔的应用前景。
5.求一篇关于数据分析的课程设计论文
希望能够帮到你:毕业设计不同于毕业论文,它的组成部分不只是一篇学术论文,我们拿“机械毕业设计”举例:随着科技发展的进步,各大高校对机械毕业设计的内容提出了一定的要求,2004年以前设计内容一般包括:毕业设计图纸+说明书(毕业论文),2005年以后国家教育部门提出新的要求,结合工厂需求加入了三维设计,模拟仿真,及程序分析研究。
其中包括:毕业设计图纸(三维“UG ,PRO/E,CAM,CAXA,SWOLIDWORD”+CAD二维工程图)+开题报告+任务书+实习报告+说明书正文。这足够的说明了做一份优质的毕业设计是要付出相当的努力!高等学校技术科学专业及其他需培养设计能力的专业或学科应届毕业生的总结性独立作业。
要求学生针对某一课题,综合运用本专业有关课程的理论和技术,作出解决实际问题的设计。毕业设计是高等学校教学过程的重要环节之一。
相当于一般高等学校的毕业论文。目的是总结检查学生在校期间的学习成果,是评定毕业成绩的重要依据;同时,通过毕业设计,也使学生对某一课题作专门深入系统的研究,巩固、扩大、加深已有知识,培养综合运用已有知识独立解决问题的能力。
毕业设计也是学生走上国家建设岗位前的一次重要的实习。一些国家根据学生的毕业设计,授予一定的学衔。
如建筑师、农艺师、摄影师等。中国把毕业设计和毕业考试结合起来,作为授予学士学位的依据。
目的要求目的毕业设计公开答辩会毕业设计公开答辩会(1)培养学生综合运用所学知识,结合实际独立完成课题的工作能力。(2)对学生的知识面,掌握知识的深度,运用理论结合实际去处理问题的能力,实验能力,外语水平,计算机运用水平,书面及口头表达能力进行考核。
要求(1)要求一定要有结合实际的某项具体项目的设计或对某具体课题进行有独立见解的论证,并要求技术含量较高;(2)设计或论文应该在教学计划所规定的时限内完成;(3)书面材料:框架及字数应符合规定。基本步骤编辑确定课题选题是毕业设计的关健。
一个良好的课题,能强化理论知识及实践技能,使学生充分发挥其创造力,圆满地完成毕业设计。毕业设计的课题可从以下几个方面综合考虑:(1)有利于综合学生所学知识。
(2)能结合学科特点。(3)尽可能联系实际。
(4)有一定的应用价值。根据以上要求,可以考虑从下面一些角度挖掘课题:(1)学科教学的延伸。
例如:结合电气控制线路,要求学生设计机械动力头控制电路并安装调试。结合数字电路进行逻辑电路的设计与装接。
(2)多学科的综合。结合某专业学科确定一个综合课题,假如课题较大,可分解为几个子课题,交由不同的小组完成,最后再整合成一个完整的课题。
例如,机电专业可设计以下课题:大型城市的交通信号灯指示。这个课题就可分为以下两个子课题:PLC控制的信号灯显示、信号长短计时的时钟电路。
(3)结合生产实际。学校可以和一些单位联合,共同开发一批有实用价值、适合学生设计的课题,甚至可以以某些单位的某项生产任务作为设计课题。
学校应注重课题资料的积累,尽量选取最适合教学内容又贴近生产实际的课题,完成资料库的建设,为今后课题的不断完善创造良好的基础。项目分析毕业设计需对一个即将进行开发的项目的一部份进行系统分析(需求分析,平台选型,分块,设计部分模块的细化)。
这类论文的重点是收集整理应用项目的背景分析,需求分析,平台选型,总体设计(分块),设计部分模块的细化,使用的开发工具的内容。论文结构一般安排如下: 1)引言(重点描述应用项目背景,项目开发特色,工作难度等) ;2)项目分析设计(重点描述项目的整体框架,功能说明,开发工具简介等);3)项目实现(重点描述数据库设计结果,代码开发原理和过程,实现中遇到和解决的主要问题,项目今后的维护和改进等,此部分可安排两到三节);4)结束语。
指导设计指导教师布置给学生任务后,要指导学生分析课题,确定设计思路,充分利用技术资料,注重设计方法和合理使用工具书。学生设计时应注重理论与实际的差距,充分考虑设计的可行性。
指导教师要注重学生完成任务的质量和速度,及时指出其存在的不足,启发其独立思考。在设计过程中,应指导学生养成良好的安全意识和严谨的工作作风。
设计完成后应撰写毕业设计论文,对自己的设计过程作全面的总结。组织答辨答辨是检查学生毕业设计质量的一场“口试”。
通过这一形式,有助于学生进一步总结设计过程,检验毕业设计论文及图纸毕业设计论文及图纸其应变能力及自信心,为真正走上社会打下坚实的基础。答辩主要考查学生的一些专业基础知识和基本理论。
答辩的过程实际上也是帮助学生总结的过程。教师要积极引导学生总结在设计过程中积累起来的经验,分析设计效果,找出不足以及改进方法,帮助学生把实践转化成自己的知识和技能。
通过答辩,也有助于学生提高应变能力及自信心,为真正走上社会打下坚实的基础。评定成绩评定成绩的根据主要有两个方面:一是毕业设计的质量;二是答辩的表现,而答辩的表现不低于毕业设计的质量。
优秀:按期圆满完成任务。
6.统计学论文题目有哪些好找数据的
可以参考下面的
1、保险消费群体分析研究—以上海地区为例/以某险种为例
2、美元走势与某大宗商品价格走势相关性分析
3、基于多元统计的上海市各区县经济综合实力评价研究
4、上海市人口规模与结构变动趋势分析
5、GDP增速与居民收入增长变化相关性分析-以上海市为例
6、上海市居民幸福感现状的调查研究
7、上海市经济增长与环境污染的实证研究
8、上海金融学院《统计学》课程考核满意度的调查研究
9、上海市统计学本科毕业生就业的调查研究
10、上海市城乡收入差距变动及其对经济的影响研究
11、上海市经济增长、能源消费与环境污染间互动性研究
12、上海市主导产业的选择研究--基于聚类分析和因子分析
13、医药行业上市公司绩效评价--基于因子分析和聚类分析
14、创业板上市公司经营绩效评价研究--基于因子分析和聚类分析
15、电力行业上市经营绩效的实证研究--基于主成分分析、因子分析与聚类分析
16、航运中心建设背景下上海市物流需求预测分析——基于XX预测技术
17、上海市小微型科技企业融资能力的评估分析——基于XX分析方法
18、大学生网络购物影响因素的实证研究——以上海金融学院为例
19、大学生专业课自主学习的实证研究——以上海金融学院为例
20、自贸区建设背景下大学生职业能力的现实考量与培养策略——以上海金融学院为例
21、上海自由贸易区建设金融资源配置的统计数据分析及对策
7.本科论文的数据分析怎么做
研究方法通常可以分为三大类,分别是差异关系,相关关系和其它关系。
如果思路上更偏向于差异关系研究,比如不同收入人群对于网购的态度差异。建议使用较多规范的量表题,因为量表规范性很强且可以使用非常多的研究方法;如果不是使用量表题,那么就可以考虑卡方分析进行研究。如果进行更多丰富的研究方法使用,则对应需要使用多样的问题设计,量表题和非量表题均需要有,并且预期上它们就需要进入差异对比的范畴。
如果思路上更偏向于研究影响关系,比如满意度对于忠诚度的影响,看上去,满意度和忠诚度均可以使用量表题进行表示,那设计成量表题没有问题,因为可以使用线性回归分析进行研究。除此之外,还有一种情况可以考虑,即logistic回归,满意度影响最终是否再次购买,是否再次购买被满意度影响,这类情况是应该使用logistic回归分析。如果是希望两类研究方法均使用,此时满意度对应的问题则需要有量表题,还有比如“是否愿意再次购买”一类的定类数据问题。
如果预期数据需要进行统计上的信度分析,此时请记住一定需要设计成量表题,否则无法进行信度分析。以及如果预期思路上有分类,即比如将样本分成3种人群,此时需要考虑使用更多规范的量表题数据。
总结上看,研究方法的匹配使用,事实上应该是在问卷设计前就进入考虑范畴。问卷研究设计完成后,大部分的问卷研究方法均已经确定,因而需要提前将问卷研究方法纳入考虑中,便于可以进行更丰富的数据分析。相对来看,量表题是可以匹配更多的研究方法,而且也更规范,建议更多的使用量表题较好。
参考资料:/p/5
8.我是本科毕业论文是关于调查分析的,里面的数据,分析我都是自己
数据最好不要自己编。调查分析类的软件(如果你是学营销或管理学的)可以用SPSS。一般人编的数据数据分析结果都能看出端倪来的,老师都不是傻子,到时候一旦被看出来你就会很难过了。
一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。
还是哪句话,一般不是长期做学术或很有经验的人,编的数据结果都很明显的能看出端倪的。建议不要数据造假,学术上是最鄙视也不能接受的。这是比你论文框架错了还要严重的错误。