1.毕业论文题目选择
1 函数逼近 2数的进制问题 3无穷维矩阵与序列Bannch空间的关系 4 多媒体课件教学设计----若干中小学数学教学案例 5 从一维,二维空间到欧氏空间 6 初中数学新课程数与代数学习策略研究 7 初中数学新课程统计与概率学习策略研究 8 对中学数学研究性学习开展过程及其途径的思考 9 函数列运算的顺序交换及条件 10儒歇定理的推广和应用(复变函数-辐角原理) 11解析函数的各种等价条件及其应用 12特征函数在概率论中的应用 13数学史与中学教育 14让生活走进数学,将数学应用于生活——谈xx数学方法的应用 15数学竞赛中的数论问题 16新旧教材的对比与研究 17近世代数在中学数学中的应用 18随机变量分布规律的求法 19简述概率论与数理统计的思想方法及其应用 20无穷大量存在的意义 21中学数学竞赛中参数问题 22例谈培养数学思维的深刻性 23圆周率与中学数学史 24从坐标系到向量空间的基 25谈谈反证法 26一致连续性的判断定理及性质 27课堂提问和思维能力的培养 28从数学高考试题的演变看中学数学教育改革 29凸函数及其在证明不等式中的应用 30极值的讨论及其应用 31正难则反,从反面来考虑问题 32实数的构造,完备性及它们的应用 33谈数学创新思维的训练 34简述期望的性质及其作用 35简述概率论与数理统计的思想和方法 36无穷乘积 37由递推式求数列的通项及和 38浅谈划归思想在数学中的应用 39凸函数的定义性质及应用 40行列式的计算方法 41可行解的表式定理的证明 42直觉思维在中学数学中的应用 43高等数学在中学数学中的应用 44充分挖掘例题的数学价值和智力开发功能 45数学思想方法的一支奇葩-----数学猜想初探 46关于实变函数中叶果罗夫定理的鲁津定理的证明 47关于黎曼积分的定义 48常微分方程的历史发展 49概率论发展史及其简单应用 50中学数学教学中创新思维的培养策略 51对数学教学中使用多媒体的几点思考 52矩阵特征值的计算方法初探 53数学结合思想及其应用 54关于上.下确界,上.下极限的定义,性质及应用 55复均方可积随机变量空间的讨论 56浅谈中学数学的等价转换 57车灯线光源的优化设计模型 58中学数学中的变式教学设计 59欧几里得第五公设产生背景及其对数学发展影响 60中学数学问题解决的学习策略研究 61变分法 62抽屉原理的应用及推广 63浅议函数迭代及其表达式 64加强数形结合,提高解题能力 65函数性质的应用 66求初等函数的值域 67中学数学应用意识的研究 68初中数学新课程空间与图形学习策略与研究 69浅谈分类讨论及解题应用 70排序方法及其应用 71从数学应用意识的培养看数学基础教育改革 72函数的凸性及其在不等式中的应用 73建构主义理论指导下的数学教学案例 74中学课程数学教学思想方法教学初探 75大学生数学素质教育思考 76数学归纳法教学探究 77师范学生高等数学课程内容设置的探讨 78统计学在证券市场中的应用 79关于全概率公式及其应用的研究 80数学开放式教学的基本理念与策略 81变量代换法与常微分方程的求解 83奥赛中组合计算方法及应用 84代数结构中同态及同构的性质 85综述十八世纪著名数学家及其工作 86谈谈不定方程 87从不定方程到孙子兵法 88略谈我国古代的数学成就 89分类思想在中学数学中的应用 90从笛卡尔的“万能代数模型”谈函数与方程的思想 91数学美在中学数学教学中的育人功能初探 92新课程理念下中学教师行为的改变 93对各种导数的研究 94不等式解法大观 95谈谈“隐函数” 96有限维矩阵的范数计算与估计 97数学奥赛中数论问题的解题方法研究 98猜想和联想 99微分方程积分因子的研究 100数的趣谈 101泰勒公式 102解析函数的孤立奇点的分类及其判断方法 103最大模原理的推广及其应用 104π的奥秘——从圆周率到统计 105对现代信息技术辅助数学及其发展的几点思考 106无理数e的发现及其应用 107初中数学新课程综合实践活动策略研究 108闭区间套定理的推广和应用 109函数的上下极限及其应用 110度量空间 111关于多值函数的解析理论探讨 112数论中一两个问题 113正多边形的对角线与边长的公度问题 114比较函数法在常微分方程中的应用 115数学分析的直观与严密 116浅谈中学数学中的构造法 117谈待定系数法在中学解题中的应用 118常微分方程与初等数学 119求随机函数的分布函数和分布密度的方法 120条件期望的性质及其应用 121从高中数学课程改革看未来的高师数学系的本科教学 122课程改革中未来高中数学教师角色的扮演 123向量代数在中学中的应用 124凸函数的等价命题及其应用 125带权图的若干应用 126有界变差函数的定义及其性质 127初等函数的极值 128数学竟赛中的不等式问题 129常微分方程各种解的定义,关系及判定方法 130三阶变系数线性常微分方程 131常微分方程的发展及应用 132常微分方程的初等解法求解技巧 133常系数线性方程组基解矩阵的计算 134高阶方程的降阶计巧。
2.孤立奇点的类型及判断方1
去百度文库,查看完整内容> 内容来自用户:363442514 孤立奇点的类型及其判定方法摘要:本文归纳了孤立奇点的类型及其主要判定的方法.分别对函数在有限点和无限点的孤立奇点研究,得到了判定孤立奇点类型的三种方法:定义法、极限值法、极点与零点关系法.接着阐述了有两个函数的和、差、积、商所得的新函数与原函数在孤立奇点类型的关系,并且结合一下例子介绍了判定孤立奇点类型的三种方法的应用.关键词:可去奇点极点本质奇点1.引言复变函数的孤立奇点是复变函数论中的重要概念.函数在孤立奇点的附近可以展示洛朗展开式,对一个函数而言,孤立奇点的个数往往不是很多的,但是这些不多的孤立奇点往往就决定着这个函数的性质了,因此,什么是孤立奇点,孤立奇点有哪些类型,怎么判定并快速的判定函数的孤立奇点的类型,对研究函数的孤立奇点去心邻域内的性质,复积分的计算等至关重要.但是函数的孤立奇点的类型往往很难判定,特别对复合函数等.这样就使得我们去探索新的方便的判定孤立奇点类型的方法.目前,已经有很多人对判定孤立奇点类型的问题做过研究了,也作出了很多成就.本文在此基础上,归纳诸多方法,旨在为判定孤立奇点类型提供参考.根据在孤立奇点某邻域的洛朗展开式判定孤立起点的类型,但是有些函数的洛朗展开式很难求出来,我们还可以根据函数在孤立奇点的极限值判定孤立奇点的类型我们称非负幂部分证明(3)[6]Keywords:。
3.能帮我找到解析函数孤立奇点的来源吗
我们知道,解析函数“‘”的孤立奇点z一‘可以用:绷’“'}来”‘断”类别:若lim .f(:)2..,a}一“‘“限数’,'u之一'是“z'的可护“,若黑}“‘’}一则z一“是“z'的极点,'若恶}“2.'!不存在‘笋在’包括极限为无穷的情形',则Z二a是f(:)的本性奇点。
我们也可以用满足条件(I(I)概l',“131“',1一。zlLma!卜'}s}“z'}一co的实数S的各种情形对f(Z)的孤立奇点Z=a进行分类。
对于(I)和(I)只有下面三种可能情形: (i)对一切实数S,(I)都成立或(!)都成立(显然(I)和(I)不可能同时成立), (11)对某些(但非全体)实数S,(I)或(互)成立, (111)对任意实数S,(I)和(I)都不成立。 我们讨论解析函数孤立奇点的分类时,总是假定函数在其孤立奇点的充分小邻域内是不恒等于零的,否则就没有多大意义。
在此约定之下,}青形(i)是不可能出现的。事实上,若对一切实数S,都有特别就有 .少Lma}z一a}'!“”!一。
· .黑}“z'】一少飞}z一‘。】“‘’1一。
这说明:,a是f(Z)的可去奇点且f。
转载请注明出处众文网 » 孤立奇点毕业论文(毕业论文题目选择)