1.毕业论文人脸图像压缩与重建
在图像处理领域中,图像的超分辨率重建技术和(略)个发展已经比较成熟的部分.本文从实际应用的要求出发,对二者的结合作了研究,即对压缩图像进行超分辨率重建. 论文主要做了以下工作:对图像压缩过程中(略)重建算法利用的运动补偿和量化进行了研究,简化并实现了MPEG-4的编码器;研究了空间域的凸集投影(POCS)超分辨率重建算法;实现了在压缩图像的变换域运用凸集投影算法来进行超分辨率重建. 实验证明,基于变换域的凸集投影算法能去除压缩过程带来的量化噪声,取得比传统解压后再进行普通超分辨率重建更好的效果.尤其在压缩比较大的情况下,重建效果更为明显。
2.毕业论文人脸图像压缩与重建
在图像处理领域中,图像的超分辨率重建技术和(略)个发展已经比较成熟的部分.本文从实际应用的要求出发,对二者的结合作了研究,即对压缩图像进行超分辨率重建. 论文主要做了以下工作:对图像压缩过程中(略)重建算法利用的运动补偿和量化进行了研究,简化并实现了MPEG-4的编码器;研究了空间域的凸集投影(POCS)超分辨率重建算法;实现了在压缩图像的变换域运用凸集投影算法来进行超分辨率重建. 实验证明,基于变换域的凸集投影算法能去除压缩过程带来的量化噪声,取得比传统解压后再进行普通超分辨率重建更好的效果.尤其在压缩比较大的情况下,重建效果更为明显。
3.图像压缩编码论文
数字图像压缩技术的研究及进展 摘 要:数字图像压缩技术对于数字图像信息在网络上实现快速传输和实时处理具有重要的意义。
本文介绍了当前几种最为重要的图像压缩算法:JPEG、JPEG2000、分形图像压缩和小波变换图像压缩,总结了它们的优缺点及发展前景。然后简介了任意形状可视对象编码算法的研究现状,并指出此算法是一种产生高压缩比的图像压缩算法。
关键词:JPEG;JPEG2000;分形图像压缩;小波变换;任意形状可视对象编码一 引 言 随着多媒体技术和通讯技术的不断发展,多媒体娱乐、信息高速公路等不断对信息数据的存储和传输提出了更高的要求,也给现有的有限带宽以严峻的考验,特别是具有庞大数据量的数字图像通信,更难以传输和存储,极大地制约了图像通信的发展,因此图像压缩技术受到了越来越多的关注。图像压缩的目的就是把原来较大的图像用尽量少的字节表示和传输,并且要求复原图像有较好的质量。
利用图像压缩,可以减轻图像存储和传输的负担,使图像在网络上实现快速传输和实时处理。 图像压缩编码技术可以追溯到1948年提出的电视信号数字化,到今天已经有50多年的历史了[1]。
在此期间出现了很多种图像压缩编码方法,特别是到了80年代后期以后,由于小波变换理论,分形理论,人工神经网络理论,视觉仿真理论的建立,图像压缩技术得到了前所未有的发展,其中分形图像压缩和小波图像压缩是当前研究的热点。本文对当前最为广泛使用的图像压缩算法进行综述,讨论了它们的优缺点以及发展前景。
二 JPEG压缩 负责开发静止图像压缩标准的“联合图片专家组”(Joint Photographic Expert Group,简称JPEG),于1989年1月形成了基于自适应DCT的JPEG技术规范的第一个草案,其后多次修改,至1991年形成ISO10918国际标准草案,并在一年后成为国际标准,简称JPEG标准。1.JPEG压缩原理及特点 JPEG算法中首先对图像进行分块处理,一般分成互不重叠的 大小的块,再对每一块进行二维离散余弦变换(DCT)。
变换后的系数基本不相关,且系数矩阵的能量集中在低频区,根据量化表进行量化,量化的结果保留了低频部分的系数,去掉了高频部分的系数。量化后的系数按zigzag扫描重新组织,然后进行哈夫曼编码。
JPEG的特点优点:(1)形成了国际标准;(2)具有中端和高端比特率上的良好图像质量。缺点:(1)由于对图像进行分块,在高压缩比时产生严重的方块效应;(2)系数进行量化,是有损压缩;(3)压缩比不高,小于50。
JPEG压缩图像出现方块效应的原因是:一般情况下图像信号是高度非平稳的,很难用Gauss过程来刻画,并且图像中的一些突变结构例如边缘信息远比图像平稳性重要,用余弦基作图像信号的非线性逼近其结果不是最优的。2. JPEG压缩的研究状况及其前景 针对JPEG在高压缩比情况下,产生方块效应,解压图像较差,近年来提出了不少改进方法,最有效的是下面的两种方法:(1)DCT零树编码 DCT零树编码把 DCT块中的系数组成log2N个子带,然后用零树编码方案进行编码。
在相同压缩比的情况下,其PSNR的值比 EZW高。但在高压缩比的情况下,方块效应仍是DCT零树编码的致命弱点。
(2)层式DCT零树编码 此算法对图像作 的DCT变换,将低频 块集中起来,做 反DCT变换;对新得到的图像做相同变换,如此下去,直到满足要求为止。然后对层式DCT变换及零树排列过的系数进行零树编码。
JPEG压缩的一个最大问题就是在高压缩比时产生严重的方块效应,因此在今后的研究中,应重点解决 DCT变换产生的方块效应,同时考虑与人眼视觉特性相结合进行压缩。三 JEPG2000压缩 JPEG2000是由ISO/IEC JTCISC29标准化小组负责制定的全新静止图像压缩标准。
一个最大改进是它采用小波变换代替了余弦变换。2000年3月的东京会议,确定了彩色静态图像的新一代编码方式—JPEG2000图像压缩标准的编码算法。
1.JPEG2000压缩原理及特点 JPEG2000编解码系统的编码器和解码器的框图如图1所示。编码过程主要分为以下几个过程:预处理、核心处理和位流组织。
预处理部分包括对图像分片、直流电平(DC)位移和分量变换。核心处理部分由离散小波变换、量化和熵编码组成。
位流组织部分则包括区域划分、码块、层和包的组织。 JPEG2000格式的图像压缩比,可在现在的JPEG基础上再提高10%~30%,而且压缩后的图像显得更加细腻平滑。
对于目前的JPEG标准,在同一个压缩码流中不能同时提供有损和无损压缩,而在JPEG2000系统中,通过选择参数,能够对图像进行有损和无损压缩。现在网络上的JPEG图像下载时是按“块”传输的,而JPEG2000格式的图像支持渐进传输,这使用户不必接收整个图像的压缩码流。
由于JPEG2000采用小波技术,可随机获取某些感兴趣的图像区域(ROI)的压缩码流,对压缩的图像数据进行传输、滤波等操作。2.JPEG2000压缩的前景 JPEG2000标准适用于各种图像的压缩编码。
其应用领域将包括Internet、传真、打印、遥感、移动通信、医疗、数字图书馆和电子商务等。JPEG2000图像压缩标准将成为21世纪的主流静。
4.图像压缩算法是什么
数据文件的压缩算法分析及实现
摘 要
图像压缩方法有很多种,从不同的角度出发有不同的分类方法。从信息论的角度出发可以分为两大类:(1)冗余度压缩方法,也称无损压缩、信息保持编码或熵编码。具体讲就是解码图像和压缩编码前的图像严格相同,没有失真。从数学上讲是一种可逆运算。(2)信息量压缩法,也称有损压缩、失真度压缩或熵压缩编码。也就是讲解码图像和原始图像有差别,允许一定的失真。其中,无损压缩编码有:霍夫曼编码、算术编码、行程编码、Lempel zev编码;有损编码有:预测方法(DPCM,运动补偿)、频率域方法(正文变换编码,子带编码)、空间域方法(统计分块编码)、模型方法(分形编码,模型基编码)、基于重要性(滤波,子采样,比特分配,矢量量化)。
本文以BMP格式图像为例,在Visual C++6.0的MFC编程环境下,系统介绍了图像压缩存储的全过程。由于是基于BMP的图像处理,本文首先介绍了BMP图像文件的格式,因为它是所有图像处理工作的基础。接下来简单介绍了Visual C++6.0编程环境,使读者对其有个了解。最后是对BMP图像数据的具体处理。本文主要完成的工作是:BMP文件的读取与显示;BMP文件的位图数据的压缩;压缩数据的解压缩及图像再现。最终转换成JPG格式。
关键词:BMP JPG GIF 压缩 图片 VC++
参考资料:
这个网站有很多资料,你可以参考下。
毕业设计:
毕业设计博客:
5.压缩感知的图像处理与应用有哪些
数字图像处理主要研究的内容有以下几个方面: 1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大.因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理).目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用. 2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量.压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行.编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术. 3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等.图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分.如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响.图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像. 4) 图像分割图像分割是数字图像处理中的关键技术之一.图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础.虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法.因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一. 5) 图像描述是图像识别和理解的必要前提.作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法.对于特殊的纹理图像可采用二维纹理特征描述.随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法. 6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类.图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视.。
6.请问研究压缩感知需要学哪些相关知识
我个人觉得,数字信号处理和数字图像处理是针对具体的应用领域做基础知识学习。而你说的压缩感知是一种高于具体应用领域的智能算法,压缩感知可以用于数字信号方面,同样也可以应用与数字图像处理。确切的说数字信号处理包含了数字图像处理,只是数字图像处理后来发展了跟多深入的知识,所以又把其独立成一门课程。比如Mallat的《信号处理的小波导引:稀疏方法(原书第3版)》这本书上的内容,就大部分说的应用时数字图像。
总之,数字信号处理、数字图像处理肯定是要学的,否则你学了压缩感知也不知道用在什么领域,要具体学习压缩感知方面的知识,再去看看IEEE里的一些论文还有一些博士论文。
7.压缩感知的主要应用
认知无线电方向:宽带谱感知技术是认识无线电应用中一个难点和重点。它通过快速寻找监测频段中没有利用的无线频谱,从而为认知无线电用户提供频谱接入机会。传统的滤波器组的宽带检测需要大量的射频前端器件,并且不能灵活调整系统参数。普通的宽带接收电路要求很高的采样率,它给模数转换器带来挑战,并且获得的大量数据处理给数字信号处理器带来负担。针对宽带谱感知的难题,将压缩感知方法应用到宽带谱感知中:采用一个宽带数字电路,以较低的频谱获得欠采样的随机样本,然后在数字信号处理器中采用稀疏信号估计算法得到宽带谱感知结果。
信道编码:压缩传感理论中关于稀疏性、随机性和凸最优化的结论可以直接应用于设计快速误差校正编码, 这种编码方式在实时传输过程中不受误差的影响。在压缩编码过程中, 稀疏表示所需的基对于编码器可能是未知的. 然而在压缩传感编码过程中, 它只在译码和重构原信号时需要, 因此不需考虑它的结构, 所以可以用通用的编码策略进行编码. Haupt等通过实验表明如果图像是高度可压缩的或者SNR充分大, 即使测量过程存在噪声, 压缩传感方法仍可以准确重构图像。 波达方向估计:目标出现的角度在整个扫描空间来看,是极少数。波达方向估计问题在空间谱估计观点来看是一个欠定的线性逆问题。通过对角度个数的稀疏限制,可以完成压缩感知的波达方向估计。
波束形成:传统的 自适应波束形成因其高分辨率和抗干扰能力强等优点而被广泛采用。但同时它的高旁瓣水平和角度失匹配敏感度高问题将大大降低接收性能。为了改进Capon 波束形成的性能,这些通过稀疏波束图整形的方法限制波束图中阵列增益较大的元素个数,同时鼓励较大的阵列增益集中在波束主瓣中,从而达到降低旁瓣水平同时,提高主瓣中阵列增益水平,降低角度失匹配的影响。例如,最大主瓣旁瓣能量比,混合范数法,最小全变差。 运用压缩传感原理, RICE大学成功研制了\单像素压缩数码照相机。 设计原理首先是通过光路系统将成像目标投影到一个数字微镜器件(DMD)上, 其反射光由透镜聚焦到单个光敏二极管上, 光敏二极管两端的电压值即为一个测量值y, 将此投影操作重复M次, 得到测量向量 , 然后用最小全变分算法构建的数字信号处理器重构原始图像。数字微镜器件由数字电压信号控制微镜片的机械运动以实现对入射光线的调整。 由于该相机直接获取的是M次随机线性测量值而不是获取原始信号的N(M,N)个像素值, 为低像素相机拍摄高质量图像提供了可能.。
压缩传感技术也可以应用于雷达成像领域, 与传统雷达成像技术相比压缩传感雷达成像实现了两个重要改进: 在接收端省去脉冲压缩匹配滤波器; 同时由于避开了对原始信号的直接采样, 降低了接收端对模数转换器件带宽的要求. 设计重点由传统的设计昂贵的接收端硬件转化为设计新颖的信号恢复算法, 从而简化了雷达成像系统。 生物传感中的传统DNA芯片能平行测量多个有机体, 但是只能识别有限种类的有机体, Sheikh等人运用压缩传感和群组检测原理设计的压缩传感DNA芯片克服了这个缺点。 压缩传感DNA芯片中的每个探测点都能识别一组目标, 从而明显减少了所需探测点数量. 此外基于生物体基因序列稀疏特性, Sheikh等人验证了可以通过置信传播的方法实现压缩传感DNA芯片中的信号重构。
8.图像压缩的图像压缩原理
1.图像压缩的概念
减少表示数字图像时需要的数据量
2.图像压缩的基本原理
图像数据之所以能被压缩,就是因为数据中存在着冗余。图像数据的冗余主要表现为:图像中相邻像素间的相关性引起的空间冗余;图像序列中不同帧之间存在相关性引起的时间冗余;不同彩色平面或频谱带的相关性引起的频谱冗余。数据压缩的目的就是通过去除这些数据冗余来减少表示数据所需的比特数。由于图像数据量的庞大,在存储、传输、处理时非常困难,因此图像数据的压缩就显得非常重要。
信息时代带来了“信息爆炸”,使数据量大增,因此,无论传输或存储都需要对数据进行有效的压缩。在遥感技术中,各种航天探测器采用压缩编码技术,将获取的巨大信息送回地面。
图像压缩是数据压缩技术在数字图像上的应用,它的目的是减少图像数据中的冗余信息从而用更加高效的格式存储和传输数据。
3。图像压缩基本方法
图像压缩可以是有损数据压缩也可以是无损数据压缩。对于如绘制的技术图、图表或者漫画优先使用无损压缩,这是因为有损压缩方法,尤其是在低的位速条件下将会带来压缩失真。如医疗图像或者用于存档的扫描图像等这些有价值的内容的压缩也尽量选择无损压缩方法。有损方法非常适合于自然的图像,例如一些应用中图像的微小损失是可以接受的(有时是无法感知的),这样就可以大幅度地减小位速。
无损图像压缩方法有:
行程长度编码
熵编码法
如 LZW 这样的自适应字典算法
有损压缩方法有:
将色彩空间化减到图像中常用的颜色。所选择的颜色定义在压缩图像头的调色板中,图像中的每个像素都用调色板中颜色索引表示。这种方法可以与 抖动(en:dithering)一起使用以模糊颜色边界。
色度抽样,这利用了人眼对于亮度变化的敏感性远大于颜色变化,这样就可以将图像中的颜色信息减少一半甚至更多。
变换编码,这是最常用的方法。首先使用如离散余弦变换(DCT)或者小波变换这样的傅立叶相关变换,然后进行量化和用熵编码法压缩。
分形压缩(en:Fractal compression)。
4.图像压缩的主要目标就是在给定位速(bit-rate)或者压缩比下实现最好的图像质量。但是,还有一些其它的图像压缩机制的重要特性:
可扩展编码 (en:Scalability) 通常表示操作位流和文件产生的质量下降(没有解压缩和再压缩)。可扩展编码的其它一些叫法有 渐进编码(en:progressive coding)或者嵌入式位流(en:embedded bitstreams)。尽管具有不同的特性,在无损编码中也有可扩展编码,它通常是使用粗糙到精细像素扫描的格式。尤其是在下载时预览图像(如浏览器中)或者提供不同的图像质量访问时(如在数据库中)可扩展编码非常有用 有几种不同类型的可扩展性:
质量渐进(en:Quality progressive)或者层渐进(en:layer progressive):位流渐进更新重建的图像。
分辨率渐进(en:Resolution progressive):首先在低分辨率编码图像,然后编码与高分辨率之间的差别。
成分渐进(en:Component progressive):首先编码灰度数据,然后编码彩色数据。
感兴趣区域编码,图像某些部分的编码质量要高于其它部分,这种方法可以与可扩展编码组合在一起(首先编码这些部分,然后编码其它部分)。
元数据信息,压缩数据可以包含关于图像的信息用来分类、查询或者浏览图像。这些信息可以包括颜色、纹理统计信息、小预览图像以及作者和版权信息。
5.图像压缩目前的标准
经典的视频压缩算法已渐形成一系列的国际标准体系,如H.26x系列建议,H.320系列建议以及MPEG系列建议等。
6.图像压缩效果的评估
压缩方法的质量经常使用峰值信噪比来衡量,峰值信噪比用来表示图象有损压缩带来的噪声。但是,观察者的主观判断也认为是一个重要的、或许是最重要的衡量标准。
转载请注明出处众文网 » 图像压缩感知毕业论文(毕业论文人脸图像压缩与重建)