1.高等数学 第二类曲线积分
从概念上讲,第一类的,都是和方向无关的,对标量的积分。
第二类的,都是和方向有关的,对某种意义上的矢量的积分。具体地说:第一类曲线积分是对长度的积分,第二类曲线积分是对坐标的积分,讲究曲线上演某方向的变化了。
第一类区面积分,是对面积的积分,第二类区面积分是对二维坐标的积分,强调面积朝向某侧的情况。 从计算上讲,第一类的计算要求出长度或者面积微元的表示式,因此计算公式似乎复杂,但是记住公式之后,因为不用考虑方向,因此实际上简单。
第二类的,不用考虑微元的表示式,直接就是对坐标积分,形式上简单,不过,在具体到某个线或者面的时候,要考虑是否要根据方向的变化分成不同的小段,在每个方向一致的小段上,还要考虑正负号,是否为零等等,实际上相对麻烦许多。 关于这两类积分(实际上是四类,不过我的称呼是分别针对面,线来说)实际上都有统一的公式。
两类曲线积分可以通过方向余弦实现统一。两类区面积分可以通过切面的法向量方向余弦实现统一。
此处的学习重点除了上述内容之外,要特别注意 格林公式,高斯公式,斯托克斯公式,拉普拉斯算子,拉普拉斯反算子。这些在某些专业中应用更广泛。
2.高等数学:第一、二类曲线积分
对弧长的曲线积分(第一类曲线积分):设L为xOy平面上的一条光滑的简单曲线弧,f(x,y)在L上有界,在L上任意插入一点列M1,M2,M3…,Mn 把L 分成 n个小弧段ΔLi的长度为ds,又Mi(x,y)是L上的任一点,作乘积f(x,y)i*ds,并求和即Σ f(x,y)i*ds,记λ=max(ds) ,若Σ f(x,y)i*ds的极限在当λ→0的时候存在,且极限值与L的分法及Mi在L的取法无关,则称极限值为f(x,y)在L上对弧长的曲线积分,记为:∫f(x,y)*ds ;其中f(x,y)叫做被积函数,L叫做积分曲线,对弧长的曲线积分也叫第一类曲线积分。
对坐标轴的曲线积分(第二类曲线积分)两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对L'的曲线积分∫P(x,y)dx+Q(x,y)dy。
但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号。对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式ds=√[1+(dy/dx)^2]*dx;或者ds=√[1+(dx/dy)^2]*dy;这样对弧长的曲线积分都可以转换成对坐标轴的曲线积分了。
在曲线积分中,被积的函数可以是标量函数或向量函数。积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。
带有权重是曲线积分与一般区间上的积分的主要不同点。物理学中的许多简单的公式(比如说)在推广之后都是以曲线积分的形式出现( )。
曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出现的概率。
3.第二型曲线积分的几何意义到底是什么,怎么用积分思想的图来画出第
本质上来说的话,第二类曲线积分是求变力沿曲线做的功。第一类曲线积分是求曲线物体的质量。从微积分学角度来说的话,第一类曲线积分是对曲线的线密度积分,就是质量。第二类曲线积分是曲线对力的作用效果积分,也就是功。但区别在于它质量是固定值,没有负的,而功虽然也是标量,但它有正负,所以对力的作用效果积分的路径要有个方向,如果是反向,功自然变为相反数。至于功,是力的矢量与位移的矢量的内积,力的矢量就是第二类曲线积分的被积向量值函数,而所谓位移就微分成路径的切向量,这样在每一点的力矢与径矢的数量积都是功元素。(这里要说明一下,如果路径是反向的话,那么力矢与径矢的数量积也变为相反数,这就是为什么第二类曲线积分路径如果变为反向积分值也会变为反向的本质原因!)对这条曲线上的所有功元素积分,就是变力沿曲线所做的功!而至于两类曲线积分的联系,说白了,你把第二类曲线积分每一点的单位切向量拿出来和向量值函数做数量积,然后就变成第一类曲线积分了。
哈哈,虽然不知道这么久了楼主能不能看到这条回复,不过对我也是有帮助的,我刚刚预习自学完曲线积分曲面积分这部分,有这么一点薄见,希望看到的人能受到启发吧
4.高等数学,第二类曲线积分题目求解惑
正确答案应该是1。
aP/ax=aQ/ay,因此积分与路径无关。
注意:积分与路径无关不是说积分值就是0,而是积分值不会随着路径的变化而变化,
因此你可以选择合适的积分路径,比如连接AB的直线段。
另外,要注意的是aP/ax=aQ/ay是有条件的,
必须x不等于y的地方,也就是去掉y=x这条直线。
因此选择路径时这条路径上不能有y=x上的点。
对本题而言,选择单位圆这条积分路径就可以了。
用单位圆的参数方程计算就可以了
转载请注明出处众文网 » 两类曲线积分的探究毕业论文(高等数学第二类曲线积分)