1.急求一篇土木工程毕业论文英文文献及翻译,不少于3000个单词
Research on the construction safety management of Civil Engineering In recent years, the construction accident in civil engineering in our country often occur. This not only caused casualties, also caused great loss of national property, and resulting in a very bad social influence. Therefore, in our country, the construction units in the civil engineering construction projects, shouldstrengthen the construction safety management, all aspects ofsecurity control for engineering, to prevent dangerous accidentsin the end it all. The cause of the civil engineering constructionaccidents are in many aspects. In order to enhance security,should be combined with the characteristics of construction projects and the enterprise's internal and external conditions, the rational allocation of production factors, optimization of management process. In order to realize the construction safetymanagement, construction units should establish a safety management system of a project, it should be carried out from the following aspects:A construction safety consciousness, cultivate the modern safety science theory, occurrence of unsafe human behavior causedcasualties. To implement safety management, it should becombined with psychology, behavioral science to strengthen the education and training of employees in production safety,improve the consciousness of safe production, so as to guide the safety production behavior of employees. For the construction enterprises should strengthen safety awareness and educationproject personnel, developing the regular safety education to the construction personnel involved in the project, and to carry outsecurity work. Three level education to the new participate in the work of the operating personnel; often transform types of employees, should be safety training for new types of work, makeoperation personnel matters needing attention can be familiar with the safe operation of the. In order to make safe win support among the people, enterprisemanagement personnel but also in engineering project, using a variety of promotional tools to start a variety of education,cultivate the construction personnel safety consciousness. Andin the management of enterprises, the production safety systemthought to. Leaders at all levels and enterprises in issuing the project production task, should also carry out safety productionmeasures. Such as the production safety requirements to the construction personnel, so conducive to safe thought into the production of management, let each employee has consciously in the psychological sense of security.Two, the establishment of management system for safety in production in addition to strengthen production safety education and awareness of construction project staff, should alsoestablish a safety management system, protect the system from the construction enterprise safety in production of. In order toavoid the frequent occurrence of sudden accident, the construction enterprise should according to the project, to develop a comprehensive, the system of safety management,and invest the necessary manpower and funds to ensure the implementation of the project. Ensure the production safetyconstruction from the system implementation, the project section of construction enterprises should establish the safety inspectionsystem, and regularly to the project construction of the security check. Make a clear record of project construction process,record the dangerous post, and regularly check the work. Self evaluation and construction team every week to organize asafety activities, the project department to make regular safetyevaluation for project production. Construction enterprises in theconstruction of civil engineering, in order to establish a safety management system, need to make corresponding technical measures for safety management system, a standard for project.Therefore, the safety work of construction enterprise project technical measures should be prior to commencement of works.As for engineering and technical measures should be strict examination and approval, the approval before implementation. If the design changes during construction, corresponding safety technical measures should be coordinated with the adjustment,will follow. The safety technical measures enacted personnel andparticipation, should fully understand the project as the construction scheme, construction environment, the actualoperation has, and combined with relevant laws and regulations or the security policy to establish safety technical measures,which can ensure the safety 。
2.本人土木专业,做毕业设计时有一篇外国土木文献需要翻译,高分求高
Compressive behavior of concrete externally confined bycomposite jackets. 外部复合护套约束的混凝土压缩性Part A: experimental study Part A: 实验性研究This paper presents the results of an experimental investigation concerning the compressive behavior of concrete short columns externally confined by carbon and E-glass FRP jackets. The influences of different parameters such as the confinement level, the mechanical properties of the jackets and the compressive strength of the concrete core were studied. The results show that external confinement can significantly improve the ultimate strength and ductility of the specimens. The stress–strain response of confined concrete is bilinear: in the first linear zone, the behaviors of plain and confined concrete specimens are similar, whereas in the second pseudo-plastic branch, the behavior of confined concrete depends mainly on the jacket mechanicals properties. Test results demonstrate that the second part of (plastic) the stress–strain response depends on the jacket stiffness and that the ultimate strength of the jacket and the concrete strength are the most influential factors affecting the ultimate strength and strain of the confined concrete. Also, the study indicates that the confinement efficiency falls when the compressive strength of the concrete core increases.本篇论文阐述了有关于外部多重碳纤维和无碱玻璃纤维增强塑料紧箍护套的短柱混凝土压缩性试验研究结果。
研究表明对其压缩性影响的因素有如约束层数,护套的力学特征,以及混凝土核心的抗压强度。研究结果发现试样的外部约束复合层对其极限强度和延伸性有显著提高。
约束型混凝土的应力应变结果具有双线性特征:在一线区域,平面性能与约束型混领土压缩性试样相似,但是在第二伪塑性分叉区。约束型混凝土压缩性主要是靠复合层的力学性能支持。
测试结果表明了第二部分(塑料)的反应主要是由护套的钢度支持,护套的极限强度以及混凝土的强度对约束型混凝土的极限强度和极限应变度影响因素最大。研究还发现约束效应在混凝土核心的抗压力上升后会降低。
Keywords: Confined concrete; FRP jackets; HPC关键词:约束型混凝土 FRP护套 HPC。
3.建筑论文外文参考文献
A construction-led design process for tubular trusses
Design Studies, Volume 15, Issue 3, July 1994, Pages 248-259
Walid M.K. Tizani, Gwynne Davies, Timothy J. McCarthy2.Construction design and management safety regulations in practice— on implementation
International Journal of Project Management, Volume 18, Issue 1, February 2000, Pages 33-40
Tony Baxendale, Owain Jones 3.Design and construction of a concrete floating berth
Engineering Structures, Volume 18, Issue 11, November 1996, Pages 837-841
P. Starr, D. A. Wainwright4.Design, construction and testing of an air-cycle refrigeration system for road transport
International Journal of Refrigeration, Volume 27, Issue 5, August 2004, Pages 503-510
Stephen W. T. Spence, W. John Doran, David W. Artt 5.Design, construction and performance prediction of integrated solar roof collectors using finite element analysis
Construction and Building Materials, Volume 21, Issue 5, May 2007, Pages 1069-1078
Marwa M. Hassan, Yvan Beliveau
4.求两篇土木工程的外文文献,最好关于施工组织设计或管理的,每篇翻
毕业设计论文施工组织设计文献综述 施工组织设计的作用是对拟建工程施工的全过程实行科学的管理的重要手段。
通过施工组织设计的编制,可以全面考虑拟建工程的各种施工条件,扬长避短,拟定合理的施工方案,确定施工顺序、施工方法、劳动组织和技术经济的组织措施,合理地统筹安排拟定施工进度计划,保证拟建工程按期投产或交付使用;也为拟建工程的设计方案在经济上的合理性,在技术上的科学性和实施工程上的可能性进行论证提供依据;还为建设单位编制基本建设计划和施工企业编制施工计划提供依据。施工企业可以提前掌握人力、材料和机具使用上的先后顺序,全面安排资源的供应与消耗;可以合理确定临时设施的数量、规模和用途;以及临时设施、材料和机具在施工场地上的布置方案。
如果施工组织设计编制的合理,能正确反映客观实际,符合建设单位和设计单位的要求,并且在施工过程中认真地贯彻执行,就可以保证工程的顺利进行,取得好、快、省和安全的效果,早日发挥基本建设投资的经济效益和社会效益。 60年代我们的施工组织措施采用的苏联的管理模式,随着我国的经济的增长,我们建筑业的发展,我们的施工项目管理也不断的更科学,70到80年代施工组织设计在我国全面的推广,经过我们不断的实践、探索、研究,使之我们现在的施工组织更科学更协调,经济上更合理 以往我们强调工程开工前必须有施工组织设计,否则不得开工,但有相当多的工程虽然编制了施工组织设计,但实际执行却不如人意,甚至有的根本无法实施。
许多年来,施工组织设计的编制往往是由个别人编写,在很大程度上造成与材料、机械、劳动力等部门的脱节,使施工组织设计开始就先天不足,到项目实施过程中,由于编制者与实施者的分离,无法起到指导作用的施工组织设计只能束之高阁。所以我们认识了不足之处对于实施方案的编制组织,现在我们采取各部门共同参与的方法,并由项目技术负责人主编,使施工组织设计真正起到指导工程施工的作用。
施工部署由单1转向了全面统筹工程的后续开展更顺利。 正 文 杨太生.《地基与基础》.-北京:中国建筑工业出版社,2004. 本书内容是根据本课程的教学基本要求并按照国家颁布的有关设计新规范、新标准编写的。
全书共分十章,包括土的物理性质及工程分类,地基中的应力计算,土的压缩性与地基沉降计算,土的抗剪强度与地基承载力,土压力与土坡稳定,建筑场地的工程地质勘察,天然地基上浅基础设计,桩基础设计,地基处理,区域性地基等内容。本书可作为土建学科高等职业学校、高等专科学校建筑工程专业及相关专业的教学用书,也可作为相关工程技术人员的参考书。
徐 蓉.《工程造价管理》. 上海:同济大学出版社,2005 本书以贯彻国家法规、规范为指导思想,从基础理论和实践应用人手,主要介绍 工程造价管理的相关理论和计算评价方法。本书共9章:第一章介绍工程造价概论, 解释了价格、造价的基本概念;第二章介绍工程造价的组成和计价方法,及工程量清 单计价规范的有关内容;第三章至第七章分别介绍了工程项目决策、设计、招标投标、施工和竣工决算等不同阶段中,建设过程中工程造价确定和管理的实际操作内容;第八、九章介绍工程财务和工程造价管理相关法规的内容,这是作为从事工程造价管理工作的工程师们所必需掌握的基本知识。
尹怡林.《建筑工程计量与计价》. 天津:天津大学出版社,2003,5. 本书针对建设工程清单时期广大预算人员的学习需要,介绍了建筑工程预算书的编制内容和步骤,全面叙述了消耗量定额与清单计价的定额说明及工程量计算规则,重点阐述了应用例题的详细解答与完整的建筑工程的消耗量定额预算书和工程量清单投标报价书。内容共分三部分,包括:绪论,上篇——建筑工程消耗量定额计量与计价,下篇——建筑工程工程量清单计量与计价。
本书逻辑清晰,图文并茂,强调理论与实践的关联,充分结合施工组织的实际,辅以大量实例,注重例题的合理化,支持启发性与交互式教学,力求实用。 本书与《建设工程计价依据与方法》配套使用,学习过程中需配备参考文献所列书籍。
本书可作为高职高专院校建筑类专业的选用教材,也可作为建筑企业管理培训教材,还可作为企事业单位中高层管理人员与技术人员的参考用书。 姚刚.土木工程施工技术.北京:人民交通出版社,2005,3 土木工程施工是土木工程专业的一门主干课。
其主要任务是研究土木工程施工技术和施工组织的一般规律;土木工程中主要工种工程施工方法和工艺原理;施工项目科学的组织原理以及土木工程施工中的新技术、新材料、新工艺的发展和应用。新的《土木工程施工》教材阐述了土木工程施工的基本理论及其工程应用,在内容上力求符合国家现行规范、标准的要求,反映现代土木工程施工的新技术、新工艺及其新成就,以满足新时期人才培养的需要;在知识点的取舍上,保留了一些常用的传统工艺方法,注重纳入对工程建设有重大影响的新技术,突出综合运用土木工程施工及其相关学科的基本理论和知识,以解决工。
5.求土木工程英文文献,一万字左右.
(4.5 ) Strength criteria for isotropic rock material(4.5.1)Types of strength criterionA peak strength criterion is a relation between stress components which will permit the peak strengths developed under various stress combinations to be predicted. Similarly, a residual strength criterion may be used to predict residual strengths under varying stress conditions. In the same way, a yield criterion is a relation between stress components which is satisfied at the onset of permanent deformation. Given that effective stresses control the stress-strain behaviour of rocks, strength and yield criteria are best written in effective stress form. However, around most mining excavations, the pore-water will be low, if not zero, and so .For this reason it is common in mining rock mechanics to use total stresses in the majority of cases and to use effective stress criteria only in special circumstance. The data presented in the preceding sections indicate that the general form of the peak strength criterion should be (4.8)This is sometimes written in terms of the shear, and normal stresses, on a particular plane in the specimen:(4.9)Because the available data indicate that the intermediate principal stress, has less influence on peak strength than the minor principal stress, all of the criteria used in practice are reduced to the form (4.10)4.5.2 Coulomb's shear strength criterionIn one of the classic paper of rock and of engineering science, Coulomb(1977) postulated that the shear strengths of rock and of soil are made up of two part – a constant cohesion and a normal stress-dependent frictional component. (Actually, Coulomb presented his ideas and calculations in terms of forces; the differential concept of stress that we use today was not introduced until the 1820s.) Thus, the shear strength that can be developed on a plane such as ab in figure 4.22 is(4.11)Where c=cohesion and Ф= angle of internal friction.Applying the stress transformation equation to the case shown in figure 4.22 givesAnd Substitution for and s = τ in equation 4.11 and rearranging gives the limiting stress condition on any plane defined by β as(4.12) There will be a critical plane on which the available shear strength will be first reaches as б1 is increased. The Mohr circle construction of Figure 4023a given the orientation of this critical plane as (4.13)This result may also be obtained by putting d(s-τ)/dβ = 0 For the critical plane, sin2β = cosФ, cos2β = -sinФ, and equation 4.12 reduces to (4.14)This linear relation between and the peak value of is shown in Figure 4.23b. Note that the slope of this envelope is related to Ф by the equation(4.15)And that the uniaxial compressive strength is related to c and Ф by (4.16) If the Coulomb shown in Figure 4.23b is extrapolated to = 0, it will intersect the axis at an apparent value of uniaxial strength of the material given by (4.17)The measurement of the uniaxial tensile strength of rock is fraught with difficulty. However, when it is satisfactorily measured, it takes values that are generally lower than those predicted value of uniaxial tensile stress, =0. Although it is widely used, Coulomb's criterion is not a particularly satisfactory peak strength criterion for rock material. The reasons for this are:(a) It implies that a major shear fracture exist at peak strength. Observations such as those made by Wawersik and Fairhurst(1970) show that is not always the case.(b) It implies a direction of shear failure which does not always agree with experimental observations.(c) Experimental peak strength envelopes are generally non-linear. They can be considered linear only over limited ranges of or . For these reasons, other peak strength criteria are preferred for intact rock. However, the Coulomb criterion can provide a good representation of residual strength conditions, and more particularly, of the shear strength of discontinuities in rock (section 4.7).4.5.3 Griffith crack theoryIn another of the classic papers of engineering science, Griffith (1921) postulated that fracture of brittle materials, such as steel and glass, is initial at tensile stress concentrations at the tips of minute, thin cracks (now referred to as Griffith based his determination of the conditions under which a crack would extend on his energy instability concept: A crack will extend only when the total potential energy of the system of applied forces and material decreases or remains constant with an increase in crack length.ROCK STRENGTH AND DEFORMABILITY For the case in which the potential energy of the applied forces is taken to be constant throughout, the criterion for crack extension may be written (4.19)Where c is a crack length parameter, We is the 。
6.求土木工程外国文献书名
哪方面的资料啊,给个关键词才好找啊这里有相关的一些文献,大多都是论文文献,不知道有没有书,前面有点杂,后面大部分都是关于桥梁的nbsp;[2]nbsp;Kimnbsp;W,EIHusseinnbsp;M.nbsp;Variationnbsp;ofnbsp;fracturenbsp;toughnessnbsp;ofnbsp;asphaltnbsp;concretenbsp;undernbsp;lownbsp;strainnbsp;.Constructionnbsp;andnbsp;Buildingnbsp;Materials,nbsp;1977,nbsp;11(4)nbsp;:403-411nbsp;.nbsp;nbsp;[3]nbsp;Parknbsp;Snbsp;W,Kimnbsp;Ynbsp;R,Schaperynbsp;Rnbsp;A.nbsp;Anbsp;viscoelasticnbsp;conti-nuumnbsp;damagenbsp;modelnbsp;andnbsp;itsnbsp;applicationnbsp;tonbsp;uniaxialnbsp;behaviorofnbsp;asphaltnbsp;concretenbsp;.Mechanicsnbsp;ofnbsp;Material,nbsp;1996,nbsp;24(4)nbsp;:241-255nbsp;.nbsp;nbsp;[4]nbsp;Tsiatasnbsp;G,Palmquistnbsp;Snbsp;M.nbsp;Fatiguenbsp;evaluationnbsp;ofnbsp;highwaynbsp;bridgesnbsp;.Probabilisticnbsp;Engineeringnbsp;Mechanics,nbsp;1999,nbsp;14nbsp;:189-194nbsp;.nbsp;nbsp;[5]nbsp;Linbsp;Znbsp;X,Channbsp;Tnbsp;Hnbsp;T,Konbsp;Jnbsp;M.nbsp;Fatiguenbsp;damagenbsp;modelnbsp;fornbsp;bridgenbsp;undernbsp;trafficnbsp;loading:applicationnbsp;madenbsp;tonbsp;Tsingnbsp;Manbsp;Bridgenbsp;.Theoreticalnbsp;andnbsp;Appliednbsp;Fracturenbsp;Mechanics,nbsp;2001,nbsp;35(1)nbsp;:81-91nbsp;.nbsp;nbsp;[1]nbsp;AASHTO.nbsp;Guidenbsp;Specificationnbsp;andnbsp;Commentarynbsp;fornbsp;Vesselnbsp;Collisionnbsp;Designnbsp;ofnbsp;Highwaynbsp;Bridges[S]nbsp;.Washingtonnbsp;D.C:nbsp;Americannbsp;Associationnbsp;ofnbsp;Statenbsp;Highwaynbsp;andnbsp;Transportationnbsp;Officials,nbsp;1991,nbsp;.nbsp;nbsp;[2]nbsp;Vrouwenveldernbsp;Anbsp;Cnbsp;Wnbsp;M.nbsp;Designnbsp;fornbsp;shipnbsp;impactnbsp;accordingnbsp;tonbsp;Eurocode1,Part2.7[C]nbsp;.Shipnbsp;Collisionnbsp;Analysis.nbsp;1998,nbsp;:123-131nbsp;.nbsp;nbsp;[3]nbsp;Kunznbsp;Cnbsp;U.nbsp;Shipnbsp;bridgenbsp;collisionnbsp;innbsp;rivernbsp;traffic,analysisnbsp;andnbsp;designnbsp;practice[C]nbsp;.Shipnbsp;Collisionnbsp;Analysis.nbsp;1998,nbsp;:13-21nbsp;.nbsp;nbsp;[4]nbsp;Pedersennbsp;Pnbsp;T,Zhangnbsp;S.nbsp;Thenbsp;mechanicsnbsp;ofnbsp;shipnbsp;impactsnbsp;againstnbsp;bridge[C]nbsp;.Proceedingnbsp;ofnbsp;Int.Symposiumnbsp;Advancesnbsp;onnbsp;Shipnbsp;Collisionnbsp;Analysis.nbsp;Copenhagen.nbsp;1998,nbsp;.nbsp;nbsp;[5]nbsp;Menziesnbsp;Jnbsp;B.nbsp;Bridgenbsp;Failures,Hazardsnbsp;andnbsp;Societalnbsp;Risk[C]nbsp;.Internationalnbsp;Symposiumnbsp;onnbsp;thenbsp;Safetynbsp;ofnbsp;Bridges.nbsp;London.nbsp;1996,nbsp;.nbsp;nbsp;[6]nbsp;Curbachnbsp;M,Nitzschenbsp;Wnbsp;M,Proskenbsp;D.nbsp;Thenbsp;Safetynbsp;ofnbsp;Bridgesnbsp;innbsp;Comparisonnbsp;tonbsp;Othernbsp;Risks[R]nbsp;..nbsp;nbsp;[7]nbsp;Mastaglionbsp;L.nbsp;Bridgenbsp;bashingnbsp;.Civilnbsp;Engineering,nbsp;1997,nbsp;67(4)nbsp;:38-40nbsp;.nbsp;nbsp;[8]nbsp;Vrouwenveldernbsp;T.nbsp;Stochasticnbsp;Modelingnbsp;ofnbsp;Extremenbsp;Actionnbsp;Eventsnbsp;innbsp;Structuralnbsp;Engineeringnbsp;.Probabilisticnbsp;Engineeringnbsp;Mechanics,nbsp;2000,nbsp;15(1)nbsp;:109-117nbsp;.。
7.土木工程英语文献
^ The American Heritage Dictionary of the English Language, Fourth Edition. Houghton Mifflin Company, 2004. [1] (accessed: 2007-08-08).^ "History and Heritage of Civil Engineering". ASCE. Retrieved 2007-08-08.^ "Institution of Civil Engineers What is Civil Engineering". ICE. Retrieved 2007-09-22.^ a b c "What is Civil Engineering?". The Canadian Society for Civil Engineering. Retrieved 2007-08-08.^ a b "Civil engineering". Encyclopædia Britannica. Retrieved 2007-08-09.^ a b c Oakes, William C.; Leone, Les L.; Gunn, Craig J. (2001). Engineering Your Future. Great Lakes Press. ISBN 1-881018-57-1^ The Architecture of the Italian Renaissance Jacob Burckhardt ISBN 0-8052-1082-2^ p. 4 of Mays, L. (2010-08-30). Ancient Water Technologies. Springer. ISBN 9789048186310.^ "Institution of Civil Engineers' website". Retrieved 2007-12-26.^ "Norwich University Legacy Website"^ Griggs, Francis E Jr. "Amos Eaton was Right!". Journal of Professional Issues in Engineering Education and Practice, Vol. 123, No. 1, January 1997, pp. 30–34. See also RPI Timeline^ "Nora Stanton Blatch Barney". Encyclopædia Britannica Online. Retrieved 2010-10-08.^ Victor E. Saouma. "Lecture notes in Structural Engineering". University of Colorado. Retrieved 2007-11-02.^ Henry Thomas Colebrook, Algebra: with Arithmetic and mensuration (London 1817)^ Various undergraduate degree requirements at MIT, Cal Poly, Queen's and Portsmouth^ ,"CITE Postgrad".^ "Why Should You Get Licensed?". National Society of Professional Engineers. Retrieved 2007-08-11.^ "Engineers Act". Quebec Statutes and Regulations (CanLII). Retrieved 2007-08-11.^ "Ethics Codes and Guidelines". Online Ethics Center. Retrieved 2007-08-11.^ Chen W-F, Scawthorn C. Earthquake Engineering Handbook, CRC Press, 2003, ISBN 0849300681, Chapter 2^ a b Mitchell, James Kenneth (1993), Fundamentals of Soil Behavior (2nd ed.), John Wiley and Sons, pp 1–2^ Shroff, Arvind V.; Shah, Dhananjay L. (2003), Soil Mechanics and Geotechnical Engineering, Taylor & Francis, 2003, pp 1–2^ Narayanan, R, A Beeby. Introduction to Design for Civil Engineers. London: Spon, 2003. /listing.php?category=96。
8.谁能给我给我两篇土木工程英语文献要有翻译的
Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including works such as bridges, roads, canals, dams and buildings. Civil engineering is the oldest engineering discipline after military engineering, and it was defined to distinguish non-military engineering from military engineering. It is traditionally broken into several sub-disciplines including environmental engineering, geotechnical engineering, structural engineering, transportation engineering, municipal or urban engineering, water resources engineering, materials engineering, coastal engineering, surveying, and construction engineering. Civil engineering takes place on all levels: in the public sector from municipal through to federal levels, and in the private sector from individual homeowners through to international companies.History of civil engineering Civil engineering is the application of physical and scientific principles, and its history is intricately linked to advances in understanding of physics and mathematics throughout history. Because civil engineering is a wide ranging profession, including several separate specialized sub-disciplines, its history is linked to knowledge of structures, materials science, geography, geology, soils, hydrology, environment, mechanics and other fields.Throughout ancient and medieval history most architectural design and construction was carried out by artisans, such as stone masons and carpenters, rising to the role of master builder. Knowledge was retained in guilds and seldom supplanted by advances. Structures, roads and infrastructure that existed were repetitive, and increases in scale were incremental.One of the earliest examples of a scientific approach to physical and mathematical problems applicable to civil engineering is the work of Archimedes in the 3rd century BC, including Archimedes Principle, which underpins our understanding of buoyancy, and practical solutions such as Archimedes' screw. Brahmagupta, an Indian mathematician, used arithmetic in the 7th century AD, based on Hindu-Arabic numerals, for excavation (volume) computations.土木工程是一门学科,专业工程的设计,施工和维护自然的物理和环境建设,包括桥梁,道路,河渠,堤坝和建筑物的工程协议。
土木工程是最古老的军事工程后,工程学科,它被定义为区分军事工程非军事工程。这是传统分解成若干子学科包括环境工程,岩土工程,结构工程,交通工程,市政工程或城市,水资源工程,材料工程,海岸工程,测量,施工工程。
土木工程需要在所有层次上进行:在从市政公用部门通过联邦的水平,并在私营部门,个别业主通过向国际公司 土木工程的历史 土木工程是物理和科学原理的应用,它的历史是错综复杂的联系在物理学和数学的了解整个历史的进步。由于土木工程是一个广泛的行业,包括一些独立的专门的子学科,它的历史是联系在一起的结构,材料科学,地理,地质,土壤,水文,环境,机械和其他领域的知识。
在整个历史上最古老的和中世纪的建筑设计和施工进行了如石匠和木匠手艺,上升到建筑师的角色。知识是保留在很少的行会和进步所取代。
构筑物,道路和基础设施存在的重复,并在规模上升的增量。对科学方法的物理和数学问题适用于土木工程最早的例子之一是阿基米德在公元前3世纪,包括阿基米德的原则,巩固我们的浮力的认识,如阿基米德螺旋切实可行的解决办法的工作。
婆罗门,印度数学家,用在公元7世纪算法的基础上,印度教,阿拉伯数字,挖掘(卷)计算。