1.我想写计算数学方面的毕业论文,但是不知道要写什么题目,求推荐
首先,你要老老实实地看完《数值计算》这本书,也很薄的一点书(千万不要象看小说那样),不在于多,你要想,要学会思维.专家们写的书都大同小异内容原理都一样,所以你说"越多越好,我好有个选择!!"你的学习态度是不是值得你去反思了?
必须先解决这个思想问题,否则你根本静不下来,坐不住,面对浩瀚的计算数学的学术海洋,你的心到底飞到哪里飘荡去了你连你自己都不知道.
思想问题是个大问题,入学时就要慢慢培养,这是个非常艰巨的过程.要学会自己调适,教育学心理学知识对低等动物适合也同时对高等动物也适合,所以要学以致用.如果有一天你不在急功近利,彻底静下心来开始严谨治学时,我再给你送如下心得.如果态度还是不到位的话,如下心得无效.你还是无法受益终身,而是痛苦终身.这个心得就是:
1.理论具有很强的对象性;
2.理论具有很强的系统性;
3.理论经过大量的实践被证明是正确的.
所以当你的计算数学的理论知识掌握到某个程度时问题很自然地就出来了,毕业论文唾手可得.
2.谁有计算类的毕业论文
公路工程概预算中材料单价的计算
[建筑工程类毕业论文] 1概述 凡是做过公路工程概预算的工程技术人员都知道,公路工程建筑安装工程造价中材料费的计算,采用的是实物法计算。即按定额规定的实物量指标,摘取分项分部工程量以后计算的实物量指标,与其相应的预算价格进行计算,然后才能准确地计算出材料费。因此材料单价的计算结果,将直接影响工程造价的高低。 2材料单价的计算 材料预算价格,是材料(包括构配件、成品及半成品)由来源地或交货地,到达工地仓库或施工地点堆放材料的地方后的综合平均价格,由材料的供应价格、运杂费、场外运输损耗及仓库保管费四部分组成,其计算公式为: 材料预算价格=(材料供应价格+运杂费)*(1+场外运输损耗率)*(1+采购及保管费率)-包装品回收价值 由于建筑材料的品种规格多、来源渠道多、工程种类多、施工分散点多,为了规范各类工程及其分部分项工程材料费的计算,我们在上述材料预算单价的计算公式中,不论哪一类工程材料,对构成材料预算单价的各个因素,一般均以一个建设项目为对象,作为综合计算的依据,这样就有利于规范各类工程及其分部分项工程材料费的计算。 2.1材料供应价格的计算 公路建设工程将材料供应价格划分为外购材料、地方性材料和自采材料三种。 2.1.1外购材料 外购材料在计划经济条件下,是国家或地方同一分配的工业产品和其他工业产品,主要指三大材(钢材、水泥、木材)及沥青、油燃料、爆破器材、五金等。外购材料供应价格应按当地市场的批发价或工业产品出厂价确定。特别注意,若一种材料有多个价格,应取加权平均价,并根据实际情况加计供销部门手续费和包装费。 材料供销部门手续费是指材料不能向生产厂家直接采购、定货供应,必须经过物资部门或供销部门供应时,按规定支付给物资部门或供销部门的附加手续费。供销部门手续费标准,应按国家规定计算,其计算公式为: 供销部……
<<<<<;全文未完,本文约3214个中文字,未计算英文字母、数字>>>>>
已经是会员的请点这查看全文,点卡用户将从您的卡中扣除一点。
3.计算数学这个方向发展前景怎么样
说到发展前景,可能很多人都不太清楚计算数学到底是学什么的。
简单科普下吧,计算数学也叫做数值计算方法或数值分析,主要研究有关的数学和逻辑问题怎样由计算机加以有效解决。主要课程包括代数方程、数值分析,数值逼近,泛函分析,数学物理方程,数据结构,科学计算实验,信号与系统。
目前计算数学的前景还是很不错的, 特别是作为数学和计算机的交叉科学,研究方向很多。其中比较热门的是,微分方程的数值求解、数值代数和流形学习,特别是流形学习已经热了几年,估计还会继续热下去。
因为研究方向比较广,所以就业面也很广,最被大家熟知的就是数据分析师了,另外在金融方向也有很不错的就业前景。
4.数学论文
去百度文库,查看完整内容>内容来自用户:精品教育数学家庭中的一对孪生兄弟――浅谈轴对称图形的应用摆银祥数学的世界真可谓是浩瀚无比。
由点到线,由线到面,由面到体。无不蕴藏着丰富的知识。
我记得曾经有一句著名的格言:数学比科学大得多,因为它是科学的语言。可想而知,数学的伟大与魅力了吧!然而,在数学的大家庭中。
有一对兄弟深深的吸引了我,他们的形状,他们的关系,他们的普遍性,让人觉得他们一直在我们的身边,离我们很近很近。他们就是轴对称图形。
轴对称图形是一个一定要沿着某直线折叠后,直线两旁的部分互相重合的图形,之所以说到他们的关系是因为他们两个总是被一条直线所连着,好似一对分不开的兄弟,关系十分的密切。把他们拉在一起的这条直线就是他们的对称轴。
当然这条对称轴就像一个公正的法官。左右两边的长度、面积、大小等,都一点儿也不差,唯一不同的就是他们所朝的方向。
在数学的课本上,我们看见过他们的身影,我们也接触和了解过他们。但是他们给我印象更多的,却是他们在日常生活中所扮演、组成的图形或者可以说是事物。
一、生活当中的轴对称图形1、自然界中的轴对称图形当我漫步在街头时,我时常看见飞来飞去的蝴蝶。当一只蝴蝶停留在花朵上,张合着翅膀时,我发现如果将蝴蝶两只触角的中点与尾部相连接,连接好的线段所在的那一条直线就是其对称轴。
而右边的翅膀就像是左边的翅膀沿着对称轴翻过去的图形。跟蝴蝶一样是轴对称图形的动物还有很多。
比如蜻蜓、飞蛾等。
5.求数学毕业论文30个参考文献
参考
1 邓小荣.高中数学的体验教学法〔J〕.广西师范学院学报,2003(8)
2 黄红.浅谈高中数学概念的教学方法〔J〕.广西右江民族师专学报,2003(6)
3 胡中双.浅谈高中数学教学中创造性思维能力的培养〔J〕.湖南教育学院学报,2001(7)
4 竺仕芳.激发兴趣,走出误区———综合高中数学教学探索〔J〕.宁波教育学院学报,2003(4)
5 杨培谊,于鸿.高中数学解题方法与技巧〔M〕.北京:北京学院出版社,1993
1、《计算机教育应用与教育革新——'97全球华人计算机教育应用大会论 文集》李克东 何克抗 主编 北京师范大学出版社 1997
2、《教育中的计算机》 全国中小学计算机教育研究中心(北京部)1998
3、林建详编:《CAI的理论与实践——迎接21世纪的挑战》 全国CBE 学会第六次学术会议论文集 1993 北京 北京大学出版社。
[1] 参见D. A. Drennen, ed., A Modern Introduction to Metaphysics, New York: Free Press of Glencoe, 1962。 此书是一本从巴门尼德到怀特海的著作选集,按形而上学中的问题分类。
[2] 参见R. G. Collingwood, An Essay on Metaphysics, Oxford: Clarendon Press, 1940。此书正文的第一句话是:“要讨论形而上学,唯一正派的、当然也是聪明的方式就是从亚里士多德开始。”
[3] 《形而上学》,982b14-28。
[4] 引自《古希腊悲剧经典》,罗念生译,北京:作家出版社,1998年,49页。
[5] 亚里士多德:《形而上学》,985b-986a,昊寿彭译,北京:商务印书馆,1981年,12-13页。
[6] 参见若-弗·马泰伊:《毕达哥拉斯和毕达哥拉斯学派》,管震湖译,北京:商务印书馆,1997年,90页以下;《古希腊哲学》,苗力田主编,中国人民大学出版社,1989年,78页;汪子嵩等:《希腊哲学史》第1卷,人民出版社,1997年,290页以下。
[7] 《古希腊哲学》,78页。
[8] 《毕达哥拉斯和毕达哥拉斯学派》,115页以下。
[9] 同上书,125页。译文稍有改动。
[10] 《希腊哲学史》第1卷,290页。
[11] 亚里士多德:《论天》,引自〈希腊哲学史〉第1卷,283页。
[12] 《毕达哥拉斯与毕达哥拉斯学派》,107页以下。
[13] 巴门尼德的话可以简略地表述为:“是是,它不能不是”,因为“存在”与“是”在古希腊和大多数西方语言中从根子上是一个词,如英文之“being”与“be”。 相关性:毕业论文,免费毕业论文,大学毕业论文,毕业论文模板
够不够 我在给你找
6.应用数学专业毕业论文
先修课程:数学与应用数学专业主要课程、教育类课程等
适用专业:数学与应用数学(本科、师范)
一、目的
培养和提高学生综合运用所学知识分析、解决问题的能力(包括数学理论研究和应用研究的能力、教学研究能力、文献检索、科技论文的写作能力)。使学生获得科学、教学研究方法的初步训练。培养学生的独立研究能力和重视开发学生的创新能力。
二、论文选题
论文选题应贯彻为我国社会主义物质文明和精神文明建设服务的方针,在基础数学、应用数学和数学教育等学科的以下几个方面加以考虑:
1.结合自己所学的专业知识,进行某一专业方向上的学术探讨;
2.结合自己所学的专业知识,进行教学研究方面的专题研究或专题综合;
3.结合自己所学的专业知识,联系实际解决一些应用问题;
4.对中学有关数学课程的教材、教学方法进行专题研究;
5.结合本人所教数学课程,对中等教育的教育理论和教育实践进行探讨;
6.对新课程改革的理论与实践进行探讨。
论文课题不宜过大,难易程度要适当。两名或两名以上学生选做同一课题论文时,各人的内容应有较大区别。学生选定课题后,应填写《毕业论文任务书》,经指导教师同意,方可进行论文工作。
三、对毕业论文的基本要求
1.立论、观点要符合马克思主义基本原理;
2.对学术的探讨要符合科学性和逻辑性;
3.对论述的主要问题要正确地运用所学专业、基础理论、基本知识和基本方法;
4.论证严谨,结论明确。所运用的研究方法基本正确,所收集的数据资料完整、充分,所设计的实验方法、步骤、正确可行,所提出的观点正确;
5.文字通顺,表达确切,书写规范,独立完成;
6.论文一般以3000字到6000字为宜,每篇论文的正文前应有300字左右的论文摘要(概括论文的中心论题以及基本观点、方法、结论)3到5个关键词。论文中所引用的定义、定理、论述都要注明出处。论文后应附有作者在写论文时所阅读的文献、参考书目录以及页码;
7.论文应包括英文名、英文摘要和英文关键词;
8.论文要按照统一格式进行排版(见江苏大学学报自然科学版)。
四、毕业论文成绩评定
1.学生毕业论文成绩的评定采取指导教师和毕业论文答辩小组分别单独评分,按比例综合评定,最后由毕业论文答辩委员会综合平衡审定。
2.成绩分5个等级:优秀、良好、中等、及格、不及格。
毕业生毕业论文统一格式要求
一、论文用纸:B5纸打印。
二、论文标题:
1、主标题:用小二号黑体字,置于首页第一行,居中。
2、正文采用四级标题,分别以“一、(一)、1、(1)”标明。其中一级标题用黑体字,二级标题用楷体,三、四级标题与正文字体相同。
三、论文正文:
1、字体:用四号仿宋体。
2、段落:行距为24磅。
3、页码:居中。
四、年级、专业与姓名:四号宋体,置于主标题与正文之间,居中,上下各空一行。
五、注释:如有注释,皆在正文之后注明。
7.哪里有数学毕业论文
数学本科毕业论文--数学教学与学生创造思维能力的培养 摘 要:现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性 思维的实质就是求新、求异、求变。
在数学教学中培养学生的创造思维、激 发创造力是时代对我们提出的基本要求。怎样培养学生的创造思维能力: 1、指导观察2、引导想象3、鼓励求异4、诱发灵感 关键词:创造 思维 前 言:在竞争日益激烈的当今社会,如何让在学校里学习的学生提前适应社会的发 展,使他们能够顺利地成长,是学校、家庭和社会所面临的一个重要问题, 本文就在数学教学中如何培养学生的创造思维能力提出自己的一些看法 现代高科技和人才的激烈竞争,归根结底就是创造性思维的竞争,而创造性思维 的实质就是求新、求异、求变。
创新是教与学的灵魂,是实施素质教育的核心;数学 教学蕴含着丰富的创新教育素材,数学教师要根据数学的规律和特点,认真研究,积 极探索培养和训练学生创造性思维的原则、方法。在数学教学中培养学生的创造思维、激发创造力是时代对我们提出的基本要求。
本文就创造思维及数学教学中如何培养学 生创造思维能力谈谈自己的一些看法。 一、创造思维及其特征 思维是具有意识的人脑对客观事物的本质属性和内部规律性的概括的间接反映。
创造思维就是合理地、协调地运用逻辑思维、形象思维及直觉思维等多种思维方式, 使有关信息有序化,以产生积极的效果或成果。数学教学中所研究的创造思维,一般 是指对思维主体来说是新颖独到的一种思维活动。
它包括发现新事物、提示新规律、建立新理论、创造新方法、获得新成果、解决新问题等思维过程,尽管这种思维结果 通常并不是首次发现或超越常规的思考。 创造思维是创造力的核心。
它具有独特性、新颖性、求异性、批判性等思维特征, 思考问题的突破常规、新颖独特和灵活变通是创造思维的具体表现,这种思维能力是 正常人经过培养可以具备的。 二、创设适宜的教学环境 教师必须用尊重、平等的情感去感染学生,使课堂充满民主、宽松、和谐的气氛, 只有这样学生才会热情高涨,才能大胆想象、敢于质疑、有所创新,这是培养学生创 造性思维能力的重要前提。
1、教育创新是教师的职责。教师应该深入钻研教材,挖掘教材本身蕴藏的创造 因素,对知识进行创造性的加工,使课堂教学有创造教育的内容。
例如教学轴对称图形时,提出 “在河边修一个水塔,使到陈村、李庄所用的水管长度最少,如何选定这个水塔的位 置?”从而把课本内容引申到实际生活中来,使教学富有实践性、科学性、现代性。突出学生的“主体”地位。
要发扬教学民主,尊重学生中的不同观点,保护学生中学习争辩的积极性,让学生敢于想象,敢于质疑,敢于标新立异,敢于挑战权威,给每个学生发表自己见解的机会,最大限度地消除学生的心理障碍,形成学生主动学习,积极参与的课堂教学氛围,处理学生学习行为时,尊重他们的想法,鼓励别出心裁等。 三、怎样培养学生的创造思维能力 1、指导观察 观察是信息输入的通道,是思维探索的大门。
敏锐的观察力是创造思维的起步器。 可以说,没有观察就没有发现,更不能有创造。
儿童的观察能力是在学习过程中实现 的,在课堂中,怎样培养学生的观察力呢? 首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要 在观察中及时指导。
比如要指导学生根据观察的对象有顺序地进行观察,要指导学生 选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科 学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。
第四,要努力培养学生浓厚的观察兴趣。如学习《三角形的认识》,学生对“围成的”理解有困难。
教师可让学生准备10厘米、16厘米、8厘米、6厘米的小棒各一根,选择其中三根摆成一个三角形。在拼摆中,学生发现用10、16、8厘米,10、8、6厘米和10、16、6厘米都能拼成三角形,当选16厘米、8厘米、6厘米长的三根小棒时,首尾不能相接,不能拼成三角形。
借助图形,学生不但直观的感知了三角形“两边之和不能小于第三边”,而且明白了“三角形”不是由“三条线段组成”的图形,而应该是由“三条线段围成”的图形,使学生对三角形的定义有了清晰的认识。因此,在概念的形成中教师要努力创造条件,给学生提供自主探索的机会和充分的思考空间,让学生在观察、操作、实验、归纳和分析的过程中亲自经历概念的形成和发展过程,进行数学的再发现、再创造。
2、引导想象 想象是思维探索的翅膀。爱因斯坦说:"想象比知识更重要,因为知识是有限的, 而想象可以包罗整个宇宙。
"在教学中,引导学生进行数学想象,往往能缩短解决问 题的时间,获得数学发现的机会,锻炼数学思维。想象不同于胡思乱想。
数学想象一 般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎 实的基础知识和丰富的经验的支持。
第二,是要有能迅速摆脱表象干扰的敏锐的洞察 力和丰富的想象力。第三,要有执着追求的情感。
因此,培养学生的想象力,首先要 使学生学好。
8.大学数学论文
如何写数学论文:选题与写作方法
引言
在审阅数学论文过程中发现很多论文内容简单,或是一两个习题证明或是将教材内容,他人论文组合改编,简单重复,更有甚者直接抄袭。很多从事数学教育工作人士认为数学教育论文难写,事实上他们还没有掌握撰写数学论文的规律。
数学论文分两种,一种称为纯数学论文,另一种为数学教学论文。很多从事数学教育工作者很难拥有大量时间从事纯数学研究,而职称聘任制又需要公开发表论文,这样一来很多人将自己工作经验加以总结转而写一些数学教研论文。 数学教研论文是对课程论,教学法,教育思想,教材及教育对象心理加以研究。但无论哪一种数学论文都要遵从论文格式及写作规律。
1 撰写数学论文应具有原则
1.1 创新性
作为发表研究结果的一种文体,应反映作者本人所提供的新的事实,新的方法,新的见解。论文选题不新颖,实验没有值的报道的成果,即使有高超写作技巧,也不可能妙笔生花,硬写出新东西来。基础性研究最忌低水平重复,如受试对象,处理因素,观测指标,结果与前人雷同,毫无新意,这样论文不值得发表。
1.2 科学性
科技论文的生命在于它的科学性。没有科学性论文毫无价值,而且可能把别人引入歧途,造成有害结果。撰写论文应具备:(1)反映事实的真实性;(2)选题材料的客观性;(3)分析判定的合理性;(4)语言表达的准确性。
1.3 规范性
规范性是论文在表现形式上的重要特点。科技论文已形成一种相对固定的论文格式,大体上由文题,一般不超过20字;摘要(应用的方法,得到的结果,具有意义等);索引关键词;引言;研究方法,讨论,结果等部分组成。这种规范化的程序是无数科学家经验总结。它的优越性在于:(1)符合认识规律;(2)简洁明快,较少篇幅容纳较多信息;(3)方便读者阅读。
2 撰写数学论文忌讳
2.1 大题小作
论文不是书,如论文题目选的过大,那么泛论,浅论就在所难免。数学教育论文基本特征:有数学内容,讲数学教育问题,具有论文形态,不贪大,不求空,具有新见解。这样作者应将课题选的小一些,写出特色。
2.2 关门写稿
一本学术杂志中的论文,单独拿出来看自然是独立完整的。就杂志的整个体系来看就会有一些联系,它们或是构成一个小专题或是使讨论不断深入。这样作者就要对你准备投稿刊物有所了解,以免无的放矢。不能缺乏事实凭空捏造,夸大结论。首先应该知道别人做了些什么,写了些什么,避免在自己的 论文中重复。同时可以借鉴别人成果,在他人研究成果基础上进一步研究,避免做无用功。
2.3 形式思维混乱
科学发展到今天,科技论文的基本格式在世界范围内已趋向统一。论文要求规范化,标准化。有的论文东拼西抄,前后矛盾,这样的论文很难教人读懂。所以撰写论文应遵守形式逻辑基本规律,正确使用逻辑推理方法尤为重要。
3 关于数学论文选题
数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则:
(1)需要性 选题应从社会需要和科学发展的需要出发。
(2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。
(3)科学性 选题应有最基本的科学事实作依据。
(4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。
4 关于数学论文文风
4.1 语言表达确切
从选词,造句,段落,篇章,标点符号都应正确无误。
4.2 语言表达清晰简洁
语句通顺,脉络清楚,行文流畅,语言简洁。
4.3 语言朴实
语言朴实无华是科技论文本色。对于科学问题阐述无须华丽词藻也不必夸张修饰。总之撰写论文应有感而写,有为而写,有目的而写。借鉴他人成果,博采众长,涉足实践,提炼新意,在你的论文中拿出你的真实感受,不简单重复别人的观点,这样的论文才可能发表,并为广大读者接受。
9.数学小论文5篇
我只能帮你一篇
数学论文“神奇的莫比乌斯圈”
莫比乌斯圈是一种只有一个面,一条线的曲面。
数学历史上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?许多人绞尽脑汁也没有想出来,他们觉得:如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不过这样就不符合涂抹的要求了。
对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。 有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。 一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耷拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。
数学中的知识,很多都来自生活
10.应用数学,基础数学,还有计算数学都有什么区别
应用数学、基础数学、计算数学的概念不同、特点不同,主要课程不同。
1、概念不同:
(1)应用数学专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才;
(2)基础数学也叫纯粹数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。
(3)计算数学是由数学、物理学、计算机科学、运筹学与控制科学等学科交叉渗透而形成的一个理科专业。
2、特点不同:
(1)应用数学要求具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法;具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应; 能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编写简单应用程序的能力;了解国家科学技术等有关政策和法规。
(2)基础数学基础数学更是基础中的基础。它的研究领域宽泛,理论性强。具体的分支方向包括:射影微分几何、黎曼几何、整体微分几何、调和分析及其应用、小波分析、偏微分方程、应用微分方程、代数学等。
(3)计算问题可以说是现代社会各个领域普遍存在的共同问题,工业、农业、交通运输、医疗卫生、文化教育等等,哪一行哪一业都有许多数据需要计算,通过数据分析,以便掌握事物发展的规律。研究计算问题的解决方法和有关数学理论问题的一门学科就叫做计算数学。计算数学属于应用数学的范畴,它主要研究有关的数学和逻辑问题怎样由计算机加以有效解决。
3、主要课程不同:
(1)应用数学主要课程:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。
主要实践性教学环节:包括计算机实习、生产实习、科研训练或毕业论文等,一般安排10~20周。
(2)基础数学主要是指几何、代数(包括数论)、拓扑、分析、方程学以及在此基础上发展起来的一些数学分支学科。
(3)计算数学包括算术、初等代数、高等代数、数论、欧式几何、非欧几何、解析几何、微分几何、代数几何学、射影几何学、拓扑学、分形几何、微积分学、实变函数论、概率和数理统计、复变函数论、泛函分析、偏微分方程、常微分方程、数理逻辑、模糊数学、运筹学、突变理论、数学物理学。
参考资料:
搜狗百科-计算数学
搜狗百科-基础数学
搜狗百科-应用数学