1.基于内容的图像检索的特征提取
基本体整体趋包含颜色、纹理、平面空间对应关系、外形,或者其他统计特征。
图像特征的提取与表达是基于内容的图像检索技术的基础。从广义上讲,图像的特征包括基于文本的特征(如关键字、注释等)和视觉特征(如色彩、纹理、形状、对象表面等)两类。
视觉特征又可分为通用的视觉特征和领域相关的视觉特征。前者用于描述所有图像共有的特征,与图像的具体类型或内容无关,主要包括色彩、纹理和形状;后者则建立在对所描述图像内容的某些先验知识(或假设)的基础上,与具体的应用紧密有关,例如人的面部特征或指纹特征等。
颜色是彩色图像最底层、最直观的物理特征,通常对噪声,图像质量的退化,尺寸、分辨率和方向等的变化具有很强的鲁棒性,是绝大多数基于内容的图像和视频检索的多媒体数据库中使用的特征之一。颜色特征的描述方法主要有以下四种:颜色直方图(ColorHistogram) 它是最简单也是最常用的颜色特征,描述了图像颜色的统计分布特性,具有平移、尺度、旋转不变性。
其核心思想是在颜色空间中采用一定的量化方法对颜色进行量化,然后统计每一个量化通道在整幅图像中所占的比重。常用的颜色空间有RGB,CIE,HSI,HSV空间等,主要的量化方法有最重要信息位、颜色空间划分、颜色空间聚类、参考颜色、图像分割等,文献中讨论了对这些方法进行了讨论和总结。
由于颜色直方图缺乏颜色的空间分布信息,改进的方法包括在颜色索引时加入空间位置信息和基于区域的颜色查询。最简单的方法是子窗口直方图法,即将图像分割成子图像,一一建立索引。
另一文献中将图像分成了大小相等的九个子图像,然后统计每个子图像中的颜色直方图。 颜色相关图(ColorCorrelogram) 其主要思想是用颜色对相对于距离的分布来描述信息,它反映了像素对的空间相关性,以及局部像素分布和总体像素分布的相关性,并且容易计算,特征范围小,效果好。
颜色矩(ColorMoment) 其基本思想是在颜色直方图的基础上计算出每个颜色通的均值、方差、偏差,用这些统计量替代颜色的分布来表示颜色特征。它具有特征量少,处理简单的特点。
颜色一致性矢量(Color Coherence Vectors, CCV) 本质上是一种引入空间信息改进的直方图算法,统计了图像中各颜色最大区域的像素数量。通过分离开一致性像素和非一致性像素,比直方图算法具有更好的区别效果。
纹理是图像的重要特征之一,通常定义为图像的某种局部性质,或是对局部区域中像素之间关系的一种度量,其本质是刻画像素的邻域灰度空间分布规律。纹理特征描述方法大致可以分为四类:统计法、结构法、模型法、频谱法。
统计法统计法分析纹理的主要思想是通过图像中灰度级分布的随机属性来描述纹理特征。最简单的统计法是借助于灰度直方图的矩来描述纹理,但这种方法没有利用像素相对位置的空间信息。
为了利用这些信息,Haralick 等人提出了用共生矩阵来表示纹理特征。 该方法研究了纹理的空间灰度级相关性,构造出一个基于图像像素间方向和距离的共生矩阵,并且从矩阵中提取出反差、能量、熵、相关等统计量作为特征量表示纹理特征。
Tamura 等人基于人类视觉的心理学研究后提出了一些不同的方法来描述纹理特征,给出了几个不同的描述纹理特征的术语:粗糙度(Coarseness) 、对比度(Contrast) 、方向(Directionality) 、线性度(Linelikeness) 、规则度(Regularity) 、粗略度(Roughness) 等。Tamura 纹理和共生矩阵表示的主要区别在于:前者的所有纹理属性都是视觉意义上的,而后者的某些纹理属性不具有视觉意义(如信息熵) 。
这一特点使得Tamura 的纹理表示在图像检索中使用得较多。QBIC 和MARS都进一步证明了这种表示方法。
结构法结构法分析纹理的基本思想是假定纹理模式由纹理基元以一定的、有规律的形式重复排列组合而成,特征提取就变为确定这些基元并定量分析它们的排列规则。Carlucci曾提出一个使用直线段、开放多边形和封闭多边形作为纹理基元的纹理模型,其排列规则由一种图状语法结构定义。
Lu and Fu给过一种树型语法结构表示纹理,他们将纹理按照9 *9 的窗口进行分割,每个分解单元的空间结构表示为一棵树。 因为实际的纹理大都是无规则的,因此结构法受到很大限制。
模型法模型法利用一些成熟的图像模型来描述纹理,如基于随机场统计学的马尔可夫随机场、子回归模型,以及在此基础上产生的多尺度子回归模型 (MultiResolution Simultaneous Autoregressive, MRSA) 等。这些模型的共同特点是通过少量的参数表征纹理。
MRSA 区分不同纹理模式的能力较强,但同时计算开销也较大。频谱法频谱法借助于频率特性来描述纹理特征,包括傅里叶功率谱法 、Gabor 变换 、塔式小波变换( Pyramid Wavelet Transform ,PWT) 、树式小波变换( Tree Wavelet Transform,TWT) 等方法。
Manjunath and Ma 实验指出, Gabor 特征提供了最佳的模式检索精度,检索性能优于TWT 和PWT,略微优于MRSA ,缺点是计算速度慢,其旋转不变性和尺度不变性仍有待讨论。 形状是刻画物体最本质的特征,也是最难描述的图像。
2.求一篇:图像识别的主要方法及其特点的比较的开题报告
利用计算机进行遥感信息的自动提取则必须使用数字图像,由于地物在同一波段、同一地物在不同波段都具有不同的波谱特征,通过对某种地物在各波段的波谱曲线进行分析,根据其特点进行相应的增强处理后,可以在遥感影像上识别并提取同类目标物。
早期的自动分类和图像分割主要是基于光谱特征,后来发展为结合光谱特征、纹理特征、形状特征、空间关系特征等综合因素的计算机信息提取。 常用的信息提取方法是遥感影像计算机自动分类。
首先,对遥感影像室内预判读,然后进行野外调查,旨在建立各种类型的地物与影像特征之间的对应关系并对室内预判结果进行验证。工作转入室内后,选择训练样本并对其进行统计分析,用适当的分类器对遥感数据分类,对分类结果进行后处理,最后进行精度评价。
遥感影像的分类一般是基于地物光谱特征、地物形状特征、空间关系特征等方面特征,目前大多数研究还是基于地物光谱特征。 在计算机分类之前,往往要做些预处理,如校正、增强、滤波等,以突出目标物特征或消除同一类型目标的不同部位因照射条件不同、地形变化、扫描观测角的不同而造成的亮度差异等。
利用遥感图像进行分类,就是对单个像元或比较匀质的像元组给出对应其特征的名称,其原理是利用图像识别技术实现对遥感图像的自动分类。计算机用以识别和分类的主要标志是物体的光谱特性,图像上的其它信息如大小、形状、纹理等标志尚未充分利用。
计算机图像分类方法,常见的有两种,即监督分类和非监督分类。监督分类,首先要从欲分类的图像区域中选定一些训练样区,在这样训练区中地物的类别是已知的,用它建立分类标准,然后计算机将按同样的标准对整个图像进行识别和分类。
它是一种由已知样本,外推未知区域类别的方法;非监督分类是一种无先验(已知)类别标准的分类方法。对于待研究的对象和区域,没有已知类别或训练样本作标准,而是利用图像数据本身能在特征测量空间中聚集成群的特点,先形成各个数据集,然后再核对这些数据集所代表的物体类别。
与监督分类相比,非监督分类具有下列优点:不需要对被研究的地区有事先的了解,对分类的结果与精度要求相同的条件下,在时间和成本上较为节省,但实际上,非监督分类不如监督分类的精度高,所以监督分类使用的更为广泛。 细小地物在影像上有规律地重复出现,它反映了色调变化的频率,纹理形式很多,包括点、斑、格、垅、栅。
在这些形式的基础上根据粗细、疏密、宽窄、长短、直斜和隐显等条件还可再细分为更多的类型。每种类型的地物在影像上都有本身的纹理图案,因此,可以从影像的这一特征识别地物。
纹理反映的是亮度(灰度)的空间变化情况,有三个主要标志:某种局部的序列性在比该序列更大的区域内不断重复;序列由基本部分非随机排列组成;各部分大致都是均匀的统一体,在纹理区域内的任何地方都有大致相同的结构尺寸。这个序列的基本部分通常称为纹理基元。
因此可以认为纹理是由基元按某种确定性的规律或统计性的规律排列组成的,前者称为确定性纹理(如人工纹理),后者呈随机性纹理(或自然纹理)。对纹理的描述可通过纹理的粗细度、平滑性、颗粒性、随机性、方向性、直线性、周期性、重复性等这些定性或定量的概念特征来表征。
相应的众多纹理特征提取算法也可归纳为两大类,即结构法和统计法。结构法把纹理视为由基本纹理元按特定的排列规则构成的周期性重复模式,因此常采用基于传统的Fourier频谱分析方法以确定纹理元及其排列规律。
此外结构元统计法和文法纹理分析也是常用的提取方法。结构法在提取自然景观中不规则纹理时就遇到困难,这些纹理很难通过纹理元的重复出现来表示,而且纹理元的抽取和排列规则的表达本身就是一个极其困难的问题。
在遥感影像中纹理绝大部分属随机性,服从统计分布,一般采用统计法纹理分析。目前用得比较多的方法包括:共生矩阵法、分形维方法、马尔可夫随机场方法等。
共生矩阵是一比较传统的纹理描述方法,它可从多个侧面描述影像纹理特征。 图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程,此处特性可以是像素的灰度、颜色、纹理等预先定义的目标可以对应单个区域,也可以对应多个区域。
图像分割是由图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征抽取和参数测量的将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。
图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,彼此是紧密关联的。图像分割在一般意义下是十分困难的问题,目前的图像分割一般作为图像的前期处理阶段,是针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。
图像分割有三种不同的途径,其一是将各象素划归到相应物体或区域的象素聚类方法即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘象素。
3.用java实现基于纹理的图像检索(灰度共生矩阵)
%**************************************************************************% 图像检索——纹理特征%基于共生矩阵纹理特征提取,d=1,θ=0°,45°,90°,135°共四个矩阵%所用图像灰度级均为256%参考《基于颜色空间和纹理特征的图像检索》%function : T=Texture(Image) %Image : 输入图像数据%T : 返回八维纹理特征行向量%**************************************************************************% function T = Texture(Image)Gray = imread('d:\result5.bmp');[M,N,O] = size(Gray);M = 128; N = 128;%--------------------------------------------------------------------------%1.将各颜色分量转化为灰度%--------------------------------------------------------------------------% Gray = double(0.3*Image(:,:,1)+0.59*Image(:,:,2)+0.11*Image(:,:,3));%--------------------------------------------------------------------------%2.为了减少计算量,对原始图像灰度级压缩,将Gray量化成16级%--------------------------------------------------------------------------for i = 1:M for j = 1:N for n = 1:256/16 if (n-1)*16<=Gray(i,j)&Gray(i,j)<=(n-1)*16+15 Gray(i,j) = n-1; end end endend%--------------------------------------------------------------------------%3.计算四个共生矩阵P,取距离为1,角度分别为0,45,90,135%--------------------------------------------------------------------------P = zeros(16,16,4);for m = 1:16 for n = 1:16 for i = 1:M for j = 1:N if j<N&Gray(i,j)==m-1&Gray(i,j+1)==n-1 P(m,n,1) = P(m,n,1)+1; P(n,m,1) = P(m,n,1); end if i>1&j<N&Gray(i,j)==m-1&Gray(i-1,j+1)==n-1 P(m,n,2) = P(m,n,2)+1; P(n,m,2) = P(m,n,2); end if i<M&Gray(i,j)==m-1&Gray(i+1,j)==n-1 P(m,n,3) = P(m,n,3)+1; P(n,m,3) = P(m,n,3); end if i<M&j<N&Gray(i,j)==m-1&Gray(i+1,j+1)==n-1 P(m,n,4) = P(m,n,4)+1; P(n,m,4) = P(m,n,4); end end end if m==n P(m,n,:) = P(m,n,:)*2; end endend%%---------------------------------------------------------% 对共生矩阵归一化%%---------------------------------------------------------for n = 1:4 P(:,:,n) = P(:,:,n)/sum(sum(P(:,:,n)));end%--------------------------------------------------------------------------%4.对共生矩阵计算能量、熵、惯性矩、相关4个纹理参数%--------------------------------------------------------------------------H = zeros(1,4);I = H;Ux = H; Uy = H;deltaX= H; deltaY = H;C =H;for n = 1:4 E(n) = sum(sum(P(:,:,n).^2)); %%能量 for i = 1:16 for j = 1:16 if P(i,j,n)~=0 H(n) = -P(i,j,n)*log(P(i,j,n))+H(n); %%熵 end I(n) = (i-j)^2*P(i,j,n)+I(n); %%惯性矩 Ux(n) = i*P(i,j,n)+Ux(n); %相关性中μx Uy(n) = j*P(i,j,n)+Uy(n); %相关性中μy end endendfor n = 1:4 for i = 1:16 for j = 1:16 deltaX(n) = (i-Ux(n))^2*P(i,j,n)+deltaX(n); %相关性中σx deltaY(n) = (j-Uy(n))^2*P(i,j,n)+deltaY(n); %相关性中σy C(n) = i*j*P(i,j,n)+C(n); end end C(n) = (C(n)-Ux(n)*Uy(n))/deltaX(n)/deltaY(n); %相关性 end%--------------------------------------------------------------------------%求能量、熵、惯性矩、相关的均值和标准差作为最终8维纹理特征%--------------------------------------------------------------------------a1 = mean(E) b1 = sqrt(cov(E))a2 = mean(H) b2 = sqrt(cov(H))a3 = mean(I) b3 = sqrt(cov(I))a4 = mean(C)b4 = sqrt(cov(C))sprintf('0,45,90,135方向上的能量依次为: %f, %f, %f, %f',E(1),E(2),E(3),E(4)) % 输出数据;sprintf('0,45,90,135方向上的熵依次为: %f, %f, %f, %f',H(1),H(2),H(3),H(4)) % 输出数据;sprintf('0,45,90,135方向上的惯性矩依次为: %f, %f, %f, %f',I(1),I(2),I(3),I(4)) % 输出数据;sprintf('0,45,90,135方向上的相关性依次为: %f, %f, %f, %f',C(1),C(2),C(3),C(4)) % 输出数据;这是我最近用过的求灰度共生矩阵及其四个参数的程序,你可以参考一下。
4.图像特征提取代码
颜色特征提取
sourceimg =img2double(img); %将图像img转换成double数据类型
rmatix = sourceimg( :, : ,1); %分别提取图像的r,g,b分量
gmatix = sourceimg( :, : , 2);
bmatix =sourceimg( :, :, 3);
2.形状特征
grayimg = rgb2gray( sourceimg ); %将rgb图像转换成灰度图像
hx = [-1 0 1;
-2 0 2;
-1 0 1;] %x方向3*3窗口滤波因子,不记得是哪个模板了
hy = hx'; %转置,Y方向滤波因子,
hxx = [1 0 -2 0 1;
4 0 -8 0 4;
6 0 -12 0 6;
4 0 -8 0 4;
1 0 -2 0 1;] %x方向5*5窗口滤波因子
hyy = hxx'; %转置,Y方向滤波因子
dx = imfilter(grayimg, hx); %滤波进行时。
dy = imfilter(grayimg, hy);
dxx = imfilter(grayimg, hxx);
dyy =imfilter(grayimg, hyy);
3.图像信息检索
r = rsshape( rmatix, m*n, 1); %rsshape是你自己写的程序吗?还是写错了(reshape)
g = rsshape( gmatix, m*n, 1); %reshape是修改图像的大小
b = rsshape( bmatix, m*n, 1);
dx1 = rsshape( dx, m*n, 1);
dy1 = rsshape( dy, m*n, 1);
dxx1 = rsshape( dxx, m*n, 1);
dyy1 = rsshape( dyy, m*n, 1);
Feature = [r, g, b, dx1, dy1, dxx1,dyy1]; %横向合并矩阵
Feature = double(Feature); %将Feature改成double型
M1= cov(Feature); %求Feature的协方差矩阵
5.求一篇“一种基于小波变换的图像融合新方法”的论文
图像融合是多传感器信息融合领域的一个重要分支[1],它是指将来自同一目标的不同传感器的信息通过一定的算法融合到一幅图上,从而获得比在单幅图上更完整、更精确的信息。
图像融合在军事(如军事侦察、识别伪装)和非军事(如医疗诊断、遥感、计算机技术等)领域得到广泛的应用。就遥感图像融合而言,目前大致分4种类型:多种分辨率的融合处理、多时相的融合处理、多种传感器类型的融合处理、多波段大容量的融合处理。
本文研究的对象属于最后一种,即不同光谱获得的图像。 这里使用基于小波变换的塔式结构的优点是小波变换具有紧凑性、正交性、很好的方向性,这使得小波变换可以很好地提取不同尺度上的显著特征,相对于高斯—拉普拉斯金字塔技术而言,不仅可以产生更好的融合结果,而且进行反向变换时稳定性更好;另外小波变换的塔式结构还使得不管原图像的长度是否2的幂次方,最终变换后的图像与原图像尺寸相同,这使得开发实用的并行算法系统成为可能。
本文正是基于这点,在对图像小波多分辨分解叙述的基础上,构造了一种图像融合算法,最后对算法进行了仿真,并对结果进行了分析。 1 图像的小波变换 定义1 多分辨分解 设fj+1∈V2j+1,由V2j+1=V2j W2j可得,存在fj∈V2j,gj∈W2j,有fj+1=fj+gj 对于图像f(x,y)而言,由文献[2]可得图像的Mallat二进小波的塔式分解为 fj+1(x,y) =∑k,mCj,k,mj,k,m+∑ε=1,2,3∑k,mDεj,k,mΨεj,k,m(1) 式中: Cj,k,m=∑l,nhl-2khn-2mCj+1,l,n; D1j,k,m=∑l,nhl-2kgn-2mCj+1,l,n D2j,k,m=∑l,ngl-2khn-2mCj+1,l,n; D3j,k,m=∑l,ngl-2kgn-2mCj+1,l,n 在图像小波分解的表达式中Cj,k,m, D1j,k,m, D2j,k,m, D3j,k,m,分别对应图像的低频子带及水平、垂直与对角线3个方向的高频子带, Cj,k,m为图像在aj分辨率下的离散逼近,D1j,k,m, D2j,k,m, D3j,k,m为2j分辨率下的离散细节。
{hk}k∈z可看作低通滤波器系数, {gk}k∈z可看作高通滤波器系数,为尺度函数,Ψ为正交小波函数。{j,k,m|k,m,∈z}构成Vj2的规范正交基,{Ψεj,k,m|j,k,m∈z}构成W2j的规范正交基。
另外,通过小波分解,除了低频子带都是一些正的变换值外,其它的3个高频子带都包含了一些在零附 近的变换值,在这些子带中,较大的变换值对应着亮度急剧变化的点,也就是图像中的显著特征,如边缘、亮线及区域轮廓。既然小波变换具有很好的空域及频域局部性,融合的效果就是:对来自同一目标的两个不同传感器所获解的图象A和B,融合前在图像A中若比图像B中显著,融合后图像A中的目标就被保留,图像B中的目标就被忽略;对不同的场景,比如图像A中的目标的外部轮廓比较明显,图像B中目标的内部轮廓比较明显,这种情况,图像A、B中目标的小波变换系数将在不同的分辨率水平上占统治地位,从而在最终的融合图像中,图像A中的外部结构与图像B中的内部结构都被保留。
因此通过融合可以实现在单幅图像上的片面的、不完整、不精确的信息得到更一致更精确的体现。 最后对组合后的变换系数进行反向小波变换,就可得到融合后的图像。
2 基于区域的图像增强算法 在图像的融合算法中,图像不同,图像的数据表征不同,融合算法也各不相同,目前采用的融合方法主要有[3]:基于像素的代数组合法、统计/数值法以及与颜色有关的技术。但是我们知道图像中的有用特征通常大于1个像素,因此基于像素的选择方法可能不是最适合的,近几年又提出了基于区域的选择方法,比较有代表性的是文献[4]中提出的基于区域的均值选择法,该方法用一M*N的窗口对图像块进行求方差运算,计算结果作为与窗口中心像素对应的一种度量方法,中心像素的选择方法为:如果两幅图像方差在对应位置上的度量值相近,取2者的均值作为输出的新值,否则取较大的值作为输出。
文献[5]中提出利用不同的特征选择算子,有方向的计算对应细节图像的局域能量,由局部能量构造匹配度及加权因子,从而对图像进行加权运算。这里以均值、方差、相关等统计参量构造一种新的区域融合算法。
以下计算以两幅图像为例,对3幅以上的图像融合算法与此类似,具体步骤如下: 首先,利用M*N (一般选M,N为奇数,常用的窗口为3*5或5*5)窗口计算小波分解各子带系数 的均值和方差,子带中以(x,y)位置为中心的区域均值与方差分别为 mi(x,y) =1M*N∑Mm=1∑Mn=1fi(x+ m -M+12,y+ n -N+12) (2) σ2i(x,y) =1M*N∑Mm=1∑Mn=1(fi(x+ m -M+12,y+ n -N+12)- mi(x,y))2(3) 图像1以(x,y)位置为中心与图像2对应区域的协方差为 β2(x,y)=1M*N∑Mm=1∑Mn=1(fi(x+m-M+12,y+n-N+12)-m1(x,y))* (f2(x+m-M+12,y+n-N+12)-m2(x,y))(4) 构造匹配度ρ及加权系数W: ρ=β2σ1σ2; Wmax=1-12ρ; Wmin=1-Wmax 然后,利用下式对两幅图像中的对应子带像素进行融合计算 f(x,y)=Wmax·MAX(f1(x,y),f2(x,y))+Wmin·MIN(f1(x,y),f2(x,y)) (5) 这里f1(x,y),f2(x,y)是上述对应窗口中心位置的两幅图像的像素灰度值。这样就完成了2j分辨率 下的数据融合,最后对融合后的子带系数进行反变换就可得到融合后的图像。
需要的话给我你的邮箱,发。
转载请注明出处众文网 » 基于灰度图像特征提取的毕业论文(基于内容的图像检索的特征提取)