1.我是一名数学系毕业生,现在正在书写毕业论文,我想了解一下幂级数
使用CNKI的学术趋势查找 全文文献 工具书 数 字 学术定义 翻译助手 学术趋势 更 多 搜索帮助 意见反馈 幂级数 -------------------------------------------------------------------------------- 历史事件: 1994年,苏瑟兰德(Sutherland)成功的利用幂级数解法证明了该模型可以解释汇率的峰形分布和汇率与利率差之间的不确定相关关系。
1989年,刘人怀发展了Way的方法,提出修正幂级数法,求解了计及表层抗弯刚度的夹层圆板的大挠度方程。 1944年,Bethe【川用标量势函数近似方法求出了幂级数的首项,从而得到圆孔衍射场的远场解。
更多>> 相关作者: 耿济 刘治国 刘仲奎 徐吉华 张永明 林鹏程 孙道椿 更多>> 相关期刊: 大学数学 高等数学研究 数学物理学报 热点年份幂级数的相关高频被引文章 -这些文章影响着学术发展的潮流 特征向量组灵敏度分析的幂级数展开法 瞿祖清,姚熊亮,张大忠 - 被引次数 3 次 关于两类幂级数系数的重排 高宗升,孙道椿,王敏 - 被引次数 3 次 更多 孪生组合恒等式(十四)——幂级数类型 耿济 - 被引次数 3 次 热点月份幂级数的相关高频浏览文章 -这些文章当月被最多您的同行所研读 一类幂级数求和方法及其应用 2005年12月 - 知网节浏览次数 8 次 更多 幂级数和函数的解法综述 2006年5月 - 知网节浏览次数 68 次 更多 一类幂级数求和方法及其应用 2006年11月 - 知网节浏览次数 21 次 更多 -------------------------------------------------------------------------------- 相关搜索: 幂函数 幂律 幂律流体 幂等 幂等元 幂等矩阵 幂集 幂零 幂零矩阵 CNKI 主页 | 关于 CNKI | 收藏CNKI学术趋势 京ICP证040431号 京ICP证040441号 互联网出版许可证 。
2.论文《幂级数的应用》前言该怎么写
级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。
中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。
而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。同时,他也开始讨论判断无穷级数的敛散性方法。
到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。
而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。它在自然科学、工程技术和数学本身方面都有广泛的作用。
幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。但很多人往往对这一内容感到困难。
产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。
3.数学与应用数学幂函数论文开题报告怎么写
1 北方民族大学毕业论文(设计) 开 题 报 告 书 题目 姓 名 学 号 专 业 数学与应用数学 指导教师 北方民族大学教务处制 2 北方民族大学毕业论文(设计) 开 题 报 告 书 2014年 3月 12 日 姓 名 院(部) 数信学院 课题性质 学 号 专 业 数学与应用数学 课题来源 老师提供 题 目 探索“积分学”所蕴含的数学美 一、选题的目的、意义(含国内外相同领域、同类课题的研究现状分析): (一)、选题的目的 (二)、选题的意义 3 二、本题的基本内容: 课题任务、重点研究内容、实现途径、方法及进度计划 4 三、推荐使用的主要参考文献: 四、指导教师意见: 签章: 年 月 日 五、院(部)审查意见: 签章: 年 月 日 还有 毕业论文(设计)开题报告 姓名 性别 学号 学院 专业 年级 论文题目 函数极值的探究与应用 □教师推荐题目 □自拟题目 题目来源 题目类别 指导教师 选题的目的、意义( 理论意义、现实意义): 选题目的:为进一步研究有关函数极值在不同的情况下的求值问题,特别是当函数是一元、二元 或者多元时的极值求解。
为学习函数极值问题提供一个比较全面的介绍,从而给学者在函数极值的求解 提供充足的知识。理论意义:整合函数极值的有关求解问题,有助于函数极值的更进一步研究。
现实意义:为初学函数极值问题提供有关的资料,也为考研及掌握函数极值提供较全面的知识准 备。选题的研究现状(理论渊源及演化、国外相关研究综述、国内相关研究综述) :函数极值是有关函数的一个重要的研究课题,它对于掌握函数有着重要的作用。
目前在有关的研 究中都有关于函数极值的讨论,并在不少的学报及学术性论文中都有关于函数极值问题的有关见解,同 时这些学者都研究的比较透彻、全面。论文( 设计) 主要内容(提纲) :本文重点介绍了有关函数极值的求解问题及其运用。
比较系统的介绍当函数是一元、二元及多元时函数极值的不同求解方法,及有关函数极值的定理 及证明。在介绍各元函数求解方法时给出了相应的函数极值求解的例题,有助于理解求函数极值的有关定 理,并对函数极值求解的掌握。
拟研究的主要问题、重点和难点: 研究的主要问题:不同元函数的极值求解的相关定理及其证明。重难点是这些定理的证明及应用问题。
研究目标:给出有关不同元函数的极值的求解定理。研究方法、技术路线、实验方案、可行性分析:研究方法:分析和综合以及理论联系实际的方法;技术路线:理论研究;实验方案:参照书本的相关知识,及相关文章;可行性分析:综合各种函数极值的求解问题,从而得出自己的研究。
研究的特色与创新之处:综合不同元的函数,给出不同元的函数极值的相关定理与证明,总结出比较系统的有关函数极值 的求解问题。进度安排及预期结果:第七学期第十五周之前:开题报告;2010 年寒假期间:搜集、整理资料,构思、细化研究路线;第八学期第一至六周:撰写论文,完成“研究路线”中的前四个阶段;第八学期第七、八周:撰写论文,给出简化阶梯形矩阵在向量空间中的若干重要应用;第八学期第九周:按照琼州学院教务处制定的《毕业论文撰写规范》排印论文;第八学期第十周:做好答辩前的准备工作。
参考文献: [1] 华东师范大学数学系编.数学分析(第三版) (上) [M].北京:高等教育出版社. [2] 方保镕等.矩阵论 [M].北京:清华大学出版社.2004(11). [3] 吉艳霞.求函数极值问题的方法探究 [J].运城学院学报.2006, [4] 李关民,王娜.函数极值高阶导数判别法的简单证明 [J].沈阳工程学报.2009. [5] 李文宇.求多元函数极值的一种新方法 [J].鸡西大学学报.2006. 指导教师意见:指导教师签名:年 月 日 答辩小组意见:组长签名:年 月 日 备注:1 、题目来源栏应填:教师科研、社会实践、实验教学、教育教学等;2 、题目类 别栏应填:应用研究、理论研究、艺术设计、程序软件开发等。
4.数学毕业论文怎么写
不识最大自然数等使课本有一系列重大根本错误
【论文关键词】标准及非标准无穷大数 假自然数集 推翻百年自然数公理和集论 极限论 级数论 变量的变域
【论文摘要】可数集的各元都必可有自然数“配偶”这一特点使自识正整数5千年来一直“深埋地下”的最大自然数及无穷多无穷大自然数一下子“破土而出”推翻百年“标准实数完备”论,显示已知实数全体仅为实数宇宙中的一颗星球!从而揭示中、小学课本有一系列重大错误:搞错变量的变域而将部分误为全部(继而推出病态的“部分可=全部”);误以为“有首项的无穷数列必无末项”使级数论有常识性与概念性错误而使小学课本违反起码数学常识地断定0.99。=1;。。
一、极限论极难学的真因:常人拒绝思想混乱的理论
“数学是研究无穷的学科。”标准分析之前2千多年的数学一直使用无穷数进行推理计算并取得了一系列伟大成就,只不过对这类举足轻重的“更无理”数一直无力实现由感性认识跃升到理性认识罢了;本文表明实现此飞跃破解由“错误的无穷数概念”竟能推出许多正确结果这一“神秘”之谜竟须历时2千多年!太伟大的实践往往远远超前理论2千多年。故“数学的前进主要是由那些具有超常直觉的人们推动的,而非由那些长于做出严格证明的人们[1]。”当理论无法解释伟大实践时恰恰表明理论有重大缺陷,不能反而由理论来否定无穷数和行之极有效的无穷小数分析法(以下简称w法)。若无穷数不存在,w法就不堪一击而绝不可2千多年不倒。“‘真人不露相’,数学大厦有‘不露相’的骨干数。没有包在墙内的钢筋铁骨的大厦,越建得高就越不堪一击[2]。”本文表明否定这类数是百年重大冤案。 本文来自第一论文网
有超常直觉的莱布尼茨运用<;任何有穷正数的无穷小正数,建立了微积分。但缺乏超常直觉的后来者错误地认为使用无穷数是非法的,须以极限法来取代w法。然而[2]指出极限论有百年糊涂话。最关键要弄清j式0j式表达ρ所取各正数ρ均<;ε,“可从某时刻起以后所取各正数ρ均<;ε的ρ>0称为正无穷小”点明没<;ε的正数就没正无穷小变量,然而极限论又说无正数[3]书在“序列极限的精确描述”中说j式表示ρ“可以变得比任何一个固定的正数小”(100页)。而正数集的元都是固定正数。刘玉琏等《数学分析讲义学习辅导书上册(二版)》(高教出版社,2003)33页:"ε∈(0,
1)=D——表示ε可是D的任何一个数。许品芳等《高等数学(上)》5页:“对于任何正数ε”“ε代表着任何一个正数”(兵器工业出版社,1992.7)。无正数来源于
毕业论文
望可以帮到您。
5.跪求复变函数的论文
4.1.3复变函数项级数 定义4.3设{fn(z)}(n=1, 2, …)为一复变函数列,其中各项均在复数域D上有定义,称表达式∑∞〖〗n=1fn(z)=f1(z)+f2(z)+…+fn(z)+…(4.2)为复变函数项级数.该级数的前n项和Sn(z)=f1(z)+f2(z)+…+fn(z)为级数的部分和. 若z0为D上的固定点,limn→∞Sn(z)=S(z0),则称复变函数项级数(4.2)在z0点收敛,z0称为级数∑∞〖〗n=1fn(z)的一个收敛点,收敛点的集合称为级数∑∞〖〗n=1fn(z)的收敛域.若级数∑∞〖〗n=1fn(z)在z0点发散,则称z0为级数∑∞〖〗n=1fn(z)的发散点,发散点的集合称为级数∑∞〖〗n=1fn(z)的发散域. 若对D内的任意点z,都有limn→∞Sn(z)=S(z),则称级数∑∞〖〗n=1fn(z)在D内处处收敛.并称S(z)为级数的和函数. 下面我们重点讨论一类特别的解析函数项级数——幂级数,它是复变函数项级数中最简单的情形.4.2幂级数〖〗 在复变函数项级数的定义中,若取fn(z)=an(z-z0)n或fn(z)=anzn(n=1, 2, …),就得到函数项级数的特殊情形∑∞〖〗n=0an(z-z0)n=a0+a1(z-z0)+a2(z-z0)2+…+an(z-z0)n+… (4.3)或∑∞〖〗n=0anzn=a0+a1z+a2z2+…+anzn+…(4.4)形如(4.3)或(4.4)的级数称为幂级数,其中,a0, a1, …, an, …和z0均为复常数. 在级数(4.3)中,令z-z0=ξ,则化为式(4.4)的形式,称级数(4.4)为幂级数的标准形式,式(4.3)称为幂级数的一般形式.为方便,今后我们以幂级数的标准形式(4.4)为主来讨论,相关结论可平行推广到幂级数的一般形式(4.3).4.2.1幂级数的收敛性 关于幂级数收敛问题,我们先介绍下面的定理.定理4.5(Abel定理)若幂级数∑∞〖〗n=0anzn在z=z0(≠0)处收敛,则此级数在|z||z0|内级数发散. 证若∑∞〖〗n=0anzn在z=z0(≠0)处收敛,即级数∑∞〖〗n = 0anzn0收敛,所以limn→∞anzn0=0因而,存在常数M>0使得对所有的n,有|anzn0|所以,∑∞〖〗n=0anzn绝对收敛. 若∑∞〖〗n=0anzn在z=z0(≠0)发散,假设存在一点z1,使得当|z1|>|z0|时,∑∞〖〗n = 0anzn1收敛. 则由上面讨论可知,∑∞〖〗n = 0anzn0收敛,与已知∑∞〖〗n = 0anzn0发散矛盾!因此,∑∞〖〗n=0anzn在|z|>|z0|发散. 由Abel定理,我们可以确定幂级数的收敛范围,对于一个幂级数来说,它的收敛情况有以下三种情形:(1) 对所有正实数z=x, ∑∞〖〗n=0anxn都收敛,由Abel定理,∑∞〖〗n=0anzn在复平面上处处绝对收敛;(2) 对所有的正实数x,∑∞〖〗n=0anxn(x≠0)发散,由Abel定理,∑∞〖〗n=0anzn在复平面内除原点z=0外处处发散;(3) 既存在使级数收敛的正实数x1>0,也存在使级数发散的正实数x2>0,即z=x1时级数∑∞〖〗n = 0anxn1收敛,z=x2时级数∑∞〖〗n = 0anxn2发散.由Abel定理,∑∞〖〗n=0anzn在|z|≤x1内,级数绝对收敛,在|z|≥x2内级数发散. 在情形(3)中,可以证明,一定存在一个有限的正数R,使得幂级数∑∞〖〗n=0anzn在圆|z|R时发散,则称R为幂级数的收敛半径,称|z|约定在第一种情形,R=∞;第二种情形,R=0. 而对于幂级数∑∞〖〗n=0an(z-z0)n,收敛圆是以z0为圆心,R为半径的圆:|z-z0|至于在收敛圆的圆周|z|=R(或|z-z0|=R)上,∑∞〖〗n=0anzn或∑∞〖〗n=0an(z-z0)n的收敛性较难判断,可视具体情况而定. 关于幂级数收敛半径的求法,同实函数的幂级数类似,可以用比值法和根植法.定理4.6( 幂级数收敛半径的求法)设幂级数∑∞〖〗n=0anzn,若下列条件之一成立:(1) (比值法)limn→∞an+1〖〗an=L;(2) (根值法)limn→∞n〖〗|an|=L.则幂级数∑∞〖〗n=0anzn的收敛半径R=1〖〗L. 证明从略.当L=0时,R=∞;当L=∞时,R=0. 例4.4求下列幂级数的收敛半径:(1) ∑∞〖〗n=1zn〖〗n3(讨论圆周上情形);(2) ∑∞〖〗n=1(z-1)n〖〗n(讨论z=0, 2的情形);(3) ∑∞〖〗n=0(cosin)zn. 解(1)因为limn→∞an+1〖〗an=limn→∞1〖〗(n+1)3〖〗1〖〗n3=limn→∞n〖〗n+13=1或者limn→∞n 〖〗|an|=limn→∞n〖〗1〖〗n3=limn→∞1〖〗n〖〗n3=1所以,收敛半径R=1,从而级数的收敛圆为|z|1),所以,级数在圆周|z|=1上也收敛.因此,所给级数的收敛范围为|z|≤1. (2) 由于limn→∞an+1〖〗an=limn→∞1〖〗(n+1)〖〗1〖〗n=limn→∞n〖〗n+1=1,故收敛半径R=1,从而它的收敛圆为|z-1|在圆周|z-1|=1上,当z=0时,原级数成为∑∞〖〗n=1(-1)n1〖〗n(交错级数),所以收敛;当z=2时,原级数为∑∞〖〗n=11〖〗n,发散.表明在收敛圆周上,既有收敛点又有发散点. (3) 由于an=cosin=1〖〗2(en-e-n),所以limn→∞an+1〖〗an=limn→∞en+1-e-(n+1)〖〗en-e-n=limn→∞en(e-e-2n-1)〖〗en(1-e-2n)=e故收敛半径为R=1〖〗e. 例4.5求幂级数∑∞〖〗n=1(-1)n1+sin1〖〗n-n2zn的收敛半径. 解因为limn→∞n〖〗(-1)n1+sin1〖〗n-n2=limn→∞1+sin1〖〗n-n=limn→∞1+sin1〖〗n1〖〗sin1〖〗n-sin1〖〗n〖〗1〖〗n=e-1故所求收敛半径为R=e. 例4.6求幂级数∑∞〖〗n=1(-i)n-1(2n-1)〖〗2nz2n-1的收敛半径. 解记fn(z)=(-i)n-1(2n-1)〖〗2nz2n-1,则limn→∞fn+1(z)〖〗 fn(z)=limn→∞(2n+1)2n|z|2n+1〖〗(2n-1)2n+1|z|2n-1=1〖〗2|z|2当1〖〗2|z|2当1〖〗2|z|2>1时,即|z|>2时,幂级数发散. 所以,该幂级数的收敛半径为R=2.4.2.2幂级数的运算和性质 和实。