1.跪求高数论文<关于微积分的总结>,字数2000字左右,急用~~
高数论文 什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。
圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。
这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。
到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。
这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。
因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。
(l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。
这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。
牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。
莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。
莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。
牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。
牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
2.急
研究数学的认知规律 提高数学分析教学水平 ________________________________________ 精品课程建设是高等学校教学质量与教学改革工程的重要组成部分,对于提高人才培养质量有着重要意义。
内蒙古大学数学分析课程于2003 年被评为国家精品课程。 内蒙古大学数学系在“数学分析”的教学研究和实践方面坚持了不懈的探索和努力,取得了显著成效。
一、更新教育理念,提倡返璞归真 数学分析课程经过两三百年的不断改进、完善,形成了一套较为完整、相对固定的理论体系。教学改革的关键是教学观念的更新,要在培养厚基础、宽口径创新人才的培养目标下,以新的视角去研究和审视整个课程体系和课程内容。
我们分析了现代数学的特殊个性——内容超现实性和思维抽象性,形成了一些新的教学理念。我们感到,按照数学内容本身高度抽象的演绎表述方式进行定论形式化教学,是数学分析教学困难的一个重要根源。
数学分析传授人们的不仅仅是一种高级的数学技术,从现代教育的观点看,它更是一种渊源于西方文明的理性主义文化的传输。 我们提出,数学教学中要重视抽象数学特殊认知规律研究的重要性,倡导用基于微积分学认知规律去从事教学。
近几年来,我们先后在《高等理科教育》、《大学数学》上发表了“数学认知与数学的教学”、“数学的个性与数学认知”、“漫谈数学科学的教学研究”等学术研究论文,提出要根据数学这一特殊学科的认知规律来进行当前数学教学改革,提出数学基础教学返璞归真的口号,产生了较大影响。 二、坚持启发式教学,引导学生探索式的创造性学习 研究探索了逻辑思维、形象思维、直觉思维相结合的启发式教学方法。
倡导新的微积分学教学理念,在积极研究探索微积分学现象到本质、具体到抽象、简单到复杂、一般到特殊的认知规律基础上,坚持有思想内蕴和结构原理的有灵魂教学,注重思维层面上的剖析和诱导,注重数学思想和方法的传授与实践,引导学生开展探索式的创造性学习。 使学生不仅求得真才实学,而且受到创造精神的启发,体现了微积分教学的理性思维品格和思辨能力的培育、聪明智慧的启迪、潜在能动性和创造力开发,大幅度提高了教学效果。
数学分析虽然具有超现实的品格,但绝不是脱离现实。它尽管具有抽象的形式,但追本溯流,仍源于现实,是现实的更高的理性抽象和概括。
在保持数学分析教学较高理论高度的同时,我们重视和倡导抽象数学的物质化,返璞归真,类比联想,发展形象思维。对抽象的数学原理和概念,引进并充实它们的物理源泉与现实应用背景,论述如何由原始朴素的问题和想法演化发展至现代数学概念。
以明晰的脉络、清澈的论理、准确的语言,追求思路的简易直观、内容的生动明达。 克服初学者认知上的障碍,化解抽象数学的认知难度。
以无穷小分析的观点和方法统率整体教学内容,使其在理论上具备很好的统一性与高度。在教学上,一方面反对没有生气、没有灵魂、死记硬背式的唯工具教育,克服数学抽象化和形式化所带来的认知上的负面影响,同时更坚持必要的抽象化和形式化的科学工作方法的学习训练,将学生切实掌握专业工作所必需的数学工具和语言手段作为教学第一目的。
三、以距离和极限为主线,重构多变量微积分学教学内容结构 随着当代科学技术的高度发展,多变量微积分成为数学分析联系并应用于其他理论和应用学科的主要渠道,属现代数学中对当代科学技术的新发展比较敏感的部分。传统教材中处理多变量微积分学的观点和体系已显得陈旧和零乱,符号语言也比较冗繁,已不能很好适应当代科学技术的发展水平。
有鉴于此,我们对多变量微积分学内容体系进行了系统深入的研究,对传统教材中的内容进行较大力度的成功改革,以全新观点和讲法重构了多变量微积分学教学内容结构,采用了先进的符号体系。主动呼应空间解析几何和线性代数课程教学进度,以距离和极限为主线,以多变量函数可微性和导数(梯度)概念为先导,以方向导数为手段,建立新的本科教学内容体系,克服了传统教材中以偏导数为先导、轻视多变量函数可微性和导数概念而导致的诸多重要问题。
多变量积分学内容也采用新的结构和符号体系,采用新的观点和讲法,注重主体思路的简易直观、概念的清晰明了以及学生思维能力和学习能力培养,有利于学生以新的视角理解多变量微积分学的实质。体现内容先进性、体系的新颖性同时,降低认知难度,减轻记忆负担,提高教学效率,将课程学习推向新的理论高度。
四、建立严格科学的教学管理和监控体系 精品课程建设要有一流的师资,要有专人负责,实行责任制。我们在数学分析课程建设中设立了主持人,建立了一套行之有效的,包括课堂教学、课程讨论、课下自学、辅导答疑、课外讲座、课程考核、课程网站等在内的全方位立体化教学方法,强化课程建设,完善科学严格的课程管理、质量监控和保证体系。
引进丰富的中外课程学习参考资料,积累完备的教学档案资料。明确课堂教学、辅导答疑、作业批改、课程考核等各环节质量要求,及时修订教学大纲,积极推进课程考核改革,认真组织实施学生评教制。
3.要大一的高数学习论文3000字左右的
高数学习对许多大一学生生来讲, 有些困 难,成绩不理想。
教师一直在苦苦思考:虽 然教师在授课过程中尽了种种努力, 但还 是有许多学生学习不好, 这是什么原因? 调查显示:这部分学生或者学习兴趣不高, 或者学习不得要领。因而, 高数学习必须 充分调动学习者的积极性, 掌握合适的学 习方法,才能有所收获。
1 学习者要意识到学习高数的重要 性, 提高学习兴趣, 变被动学习为主 动学习 据了解, 许多学生意识不到高数学习 的重要性,他们对大学课程里学习高数的 重要性不甚清楚,也没有学习的热情,更谈 不上积极性了。 1 . 1 数学教育具有重要的基础性作用与素 质教育作用 现代信息、空间技术、核能利用、基 因工程、微电子、纳米材料等引领的新技 术革命, 以及现代人文科学的定量分析需 要以数学为主要基础。
数学学科严密的定义方式、缜密的逻 辑思维、全面的系统分析是辩证唯物主义 思想在数学学科中的集中反映, 在大学生 素质教育中起着不可替代的作用。素质表 现在数学意识、数学语言、数学技能、数 学思维四个方面。
素质的提高有助于学生 形成良好的思想道德素质,科学文化素质, 生理心理素质,从而提高人的素质。 这是有例子可以验证的。
以北京大学 地质系为例,一个系就培养了48 位中科院 院士, 而这得益于李四光先生的理念—— 加强数理基础, 原因就是学生的工科数学 基础好、逻辑思维强、头脑清晰。 1 . 2 培养对高数的兴趣能激发学习热情 “兴趣是最好的老师”。
心理学家布鲁纳 认为:“学习是主动的过程,对学生学习内因的 最好的激发是对所学教材的兴趣。”“有了兴 趣就会乐此不疲,好之不倦,就会挤时间学习 了。”
学生只有对学习感兴趣,能把心理活动 指向和集中在学习的对象上,感知活跃,注意 力集中,观察敏锐,记忆持久而准确,思维敏锐 而丰富,强化学习的内在动力,调动学习的积 极性,激发智力和创造力,提高学习效率。 1.2.1 提高学习高数的兴趣首先从了 解数学史做起 我们可以首先了解中国数学史,了解中 国数学的萌芽、发展、全盛、衰弱的过程 和原因;我们还可以从高数中的微积分发明 的历史谈起,通过对历史的了解和感受来体 会到数学的博大精深,激发探求欲望。
4.求一篇大一微积分与经济学有关的小论文,2000字左右
微积分的基本思想及其在经济学中的应用摘要: 微积分局部求近似、极限求精确的基本思想贯穿于整个微积分学体系中,而微积分在各个领域中又有广泛的应用,随着市场经济的不断发展,微积分的地位也与日俱增,本文着重研究微分在经济活动中边际分析、弹性分析、最值分析的应用,以及积分在最优化问题、资金流量的现值问题中的应用。
关键词:微分 积分 基本思想 应用微积分是人类智慧最伟大的成就之一,局部求近似、极限求精确的基本思想是进一步学习高等数学的基础。随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,运用微分和积分可以对经济活动中的实际问题进行量化分析,从而为企业经营者的科学决策提供依据。
1. 微积分的产生、发展及其作用 微积分思想的萌发出现的比较早,中国战国时代的《庄子·天下》篇中的“一尺之锤,日取其半,万事不竭”就蕴涵了无穷小的思想。经查阅文献《晏能中.微积分——数学发展的里程牌》得知:到了十七世纪,欧洲许多数学家也开始运用微积分的思想来写极大值与极小值,以及曲线的长度等等。
帕斯卡在求曲边形面积时,用到“无穷小矩形”的思想,并把无穷小概念引入数学,为后来莱布尼兹的微积分的产生奠定了基础。 随着数学科学的发展,微积分得到了进一步的发展,其中欧拉对于微积分的贡献最大,他的《无穷小分析引论》、《微分学》、《积分学》三部著作对微积分的进一步丰富和发展起了重要的作用。
之后,洛必达、达朗贝尔、拉格朗日、拉普拉斯、勒让德、傅立叶等数学家也对微积分的发展作出了较大的贡献。由于这些人的努力,微分方程、级数论得以产生,微积分也正式成为了数学一个重要分支。
微积分的创立改变了整个数学世界。微积分的创立,极大的推动了数学自身的发展,同时又进一步开创了诸多新的数学分支,例如:微分方程、无穷级数、离散数学等等。
此外,数学原有的一些分支,例如:函数与几何等等,也进一步发展成为复变函数和解析几何,这些数学分支的建立无一不是运用了微积分的方法。在微积分创设后这三百年中,数学获得了前所未有的发展。
2. 微积分的基本思想———局部求近似、极限求精确 微积分是微分学和积分学的总称,它的基本思想是:局部求近似、极限求精确。以下我们具体阐述微分学与积分学的思想。
2.1微分学的基本思想 微分学的基本思想在于考虑函数在小范围内是否可能用线性函数或多项式函数来任意近似表示。直观上看来,对于能够用线性函数任意近似表示的函数,其图形上任意微小的一段都近似于一段直线。
在这样的曲线上,任何一点处都存在一条惟一确定的直线──该点处的“切线”。它在该点处相当小的范围内,可以与曲线密合得难以区分。
这种近似,使对复杂函数的研究在局部上得到简化。2.2积分学的基本思想 积分学的最基本的概念是关于一元函数的定积分与不定积分。
蕴含在定积分概念中的基本思想是通过有限逼近无限。因此极限方法就成为建立积分学严格理论的基本方法。
微分与积分虽然是微观和宏观两种不同范畴的问题,但它们的研究对象都是“非均匀”变化量,解决问题的基本思想方法也是一致的。可归纳为两步:a.微小局部求近似值;b.利用极限求精确。
微积分的这一基本思想方法贯穿于整个微积分学体系中,并且将指导我们应用微积分知识去解决各种相关的问题。3.微分在经济学中的应用 随着经济的发展及数学理论的完善,数学与经济学的关系越来越密切,应用越来越广泛.微积分作为数学知识的基础,介绍微积分与经济学的书也越来越多,然而大部分书或者着重介绍经济学概念或者着重介绍数学理论,很少有主要介绍微积分在经济学中的应用的书.本文将通过对一些简单的微积分知识在经济学中的应用,以使人们意识到理论与实际结合的重要性. 3.2弹性分析 在文献《蔡芷.财会数学》中,某个变量对另一个变量变化的反映程度称为弹性或弹性系数。
在经济工作中有多种多样的弹性,这决定于所考察和研究的内容,如果是价格的变化与需求反映之间有关系,那么这个反映就称为需求弹性。由于具体商品本身属性的不同以及消费需求的差异,同样的价格变化给不同商品的需求带来的影响是不同的。
有的商品反应灵敏,弹性大,涨价降价会造成剧烈的销售变动;有的商品则反应呆滞,弹性小,价格变化对其没什么影响。4.积分在经济学中的应用 积分学是微分学的逆问题,利用积分学来研究经济变量的变化问题是经济学中的一个重要方法,不定积分是求全体原函数,定积分是求和式的极限。
由边际函数求原函数,或求一个变上限的定积分,一般都采用不定积分来解决;如果求原函数在某个范围的改变量,则采用定积分来解决。对企业经营者来说,对其经济环节进行定量分析是非常必要的,不但可以给企业经营者提供精确的数值,而且在分析的过程中,还可以给企业经营者提供新的思路和视角。
5.总结: 微积分局部求近似、极限求精确的基本思想方法贯穿于整个微积分学体系中,在经济日益发展的今天,微积分的地位也与日俱增,贷款、养老金、医疗保险、企业分配、市场需求等等金融问题越来越。
5.高等数学论文,2000字
我认为,一定要把教材看懂,我第一次微分方程部分来不及看,结果微分方程部分的题目不会做,就差4分,我如果做了一道微分方程的5分题就不用再考第二次了。
其次,一定要把书后的练习题做一遍,因为只有不断的练习(特别是理科类的课程)才能提高解题技巧和记住公式。我考了两次把书中的练习题做了两遍(当然,并不是所有的题目我都会做,我大概只会做80%的题目),做完之后就对着书后的答案看是否做错,做错在什么地方,通过分析就可以尽量避免在考试时犯同样的错误。
快考试前的一个月,我就做前几次考试的试题,了解一下考试出题的类型和看那一部分内容在考试中占的分数比较多,对于分数少而又比较难的部分,在时间不够时可以有选择地放弃(当然,全部都会及格的机会更大)。我在看教材时,先把教材看完一节就做一节的练习,看完一章后,我特别注意书后的“结束语”部分,通过看小结对整一章的内容进行总复习,根据“本章的基本要求”和“对学习的建议”两部分的要求,掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容。
我强烈建议多看小结部分,可以使你学习的目的明确,有的放矢,不必花太多时间在次要(不要求掌握部分)内容上。我每看完一章就反复琢磨书后的小结(每一章的小结部分我差不多看了4、5遍),找准重点后再重新把书中的重点知识学习第二遍,力求一定掌握重点知识,并会做相应的习题。
对于书中不会做的题目或者是看不懂的例题,如果身边有朋友可以请教就请教,力求书中要求掌握的都会做。身边没有人可以请教,就与也报考这门课程的网友共同讨论,使大家在讨论中得到提高。
付出的劳动与成绩是成正比的,早日开始学习,多花一点时间学习,你通过的机会就越大。在此也祝愿大家在自考中一帆风顺。
转载请注明出处众文网 » 高数微积分毕业论文(跪求高数论文,字数2000字左右,急用~~)