1.宇宙微波背景辐射论文
宇宙微波背景辐射(又称3K背景辐射)是一种充满整个宇宙的电磁辐射。特征和绝对温标2.725K的黑体辐射相同。频率属与微波范围。 [编辑本段]预测 1934年,Tolman是第一个研究有关宇宙背景辐射的人。他发现在宇宙中辐射温度的演化里温度会随著时间演化而改变;而光子的频率随时间演化(即宇宙学红移)也会有所不同。但是当两者一起考虑时,也就是讨论光谱时(是频率与温度的函数)两者的变化会抵销掉,也就是黑体辐射的形式会保留下来。
1948年,由旅美的俄国物理学家伽莫夫带领的团队估算出,如果宇宙最初的温度约为十亿度,则会残留有约5~10k 的黑体辐射。然而这个工作并没有引起重视。
1964年,苏联的泽尔多维奇(Zel'dovich)、英国的霍伊尔(Hoyle)、泰勒(Tayler)、美国的皮伯斯(Peebles)等人的研究预言,宇宙应当残留有温度为几开的背景辐射,并且在厘米波段上应该是可以观测到的,从而重新引起了学术界对背景辐射的重视。美国的狄克(Dicke)、劳尔(Roll)、威尔金森(Wilkinson)等人也开始着手制造一种低噪声的天线来探测这种辐射,然而另外两个美国人无意中先于他们发现了背景辐射。 [编辑本段]发现 1964年,美国贝尔实验室的工程师阿诺·彭齐亚斯(Penzias)和罗伯特·威尔逊(Wilson)架设了一台喇叭形状的天线,用以接受“回声”卫星的信号。为了检测这台天线的噪音性能,他们将天线对准天空方向进行测量。他们发现,在波长为7.35cm的地方一直有一个各向同性的讯号存在,这个信号既没有周日的变化,也没有季节的变化,因而可以判定与地球的公转和自转无关。
起初他们怀疑这个信号来源于天线系统本身。1965年初,他们对天线进行了彻底检查,清除了天线上的鸽子窝和鸟粪,然而噪声仍然存在。于是他们在《天体物理学报》上以《在4080兆赫上额外天线温度的测量》为题发表论文正式宣布了这个发现。
紧接着狄克、皮伯斯、劳尔和威尔金森在同一杂志上以《宇宙黑体辐射》为标题发表了一篇论文,对这个发现给出了正确的解释:即这个额外的辐射就是宇宙微波背景辐射。这个黑体辐射对应到一个3k的温度。之后在观测其他波长的背景辐射推断出温度约为2.7K。
宇宙背景辐射的发现在近代天文学上具有非常重要的意义,它给了大爆炸理论一个有力的证据,并且与类星体、脉冲星、星际有机分子一道,并称为20世纪60年代天文学“四大发现”。彭齐亚斯和威尔逊也因发现了宇宙微波背景辐射而获得1978年的诺贝尔物理学奖。 [编辑本段]进一步的研究 后来人们在不同波段上对微波背景辐射做了大量的测量和详细的研究,发现它在一个相当宽的波段范围内良好地符合黑体辐射谱,并且在整个天空上是高度各相同性的,只是具有一个微小的偶极各相异性:在赤经 11.3±0.1 h,赤纬 4±2°的地方温度略高,在相反的方向温度略低,人们认为这是由银河系运动带来的多普勒效应所引起的。 [编辑本段]COBE的成果 根据1989年11月升空的微波背景探测卫星(COBE,Cosmic Background Explorer)测量到的结果,宇宙微波背景辐射谱非常精确地符合温度为 2.726±0.010K 的黑体辐射谱,证实了银河系相对于背景辐射有一个相对的运动速度,并且还验证,扣除掉这个速度对测量结果带来的影响,以及银河系内物质辐射的干扰,宇宙背景辐射具有高度各向同性,温度涨落的幅度只有大约百万分之五。目前公认的理论认为,这个温度涨落起源于宇宙在形成初期极小尺度上的量子涨落,它随着宇宙的暴涨而放大到宇宙学的尺度上,并且正是由于温度的涨落,造成物质宇宙物质分布的不均匀性,最终得以形成诸如星系团等的一类大尺度结构。 [编辑本段]WMAP的发现 2003年,美国发射的威尔金森微波各向异性探测器对宇宙微波背景辐射在不同方向上的涨落的测量表明,宇宙的年龄是137±1亿年,在宇宙的组成成分中,4%是一般物质,23%是暗物质,73%是暗能量。宇宙目前的膨胀速度是71公里每秒每百万秒差距,宇宙空间是近乎于平直的,它经历过暴涨的过程,并且会一直膨胀下去。
2.【求黑体辐射理论的详细介绍越全面越好】
任何物体都具有不断辐射、吸收、发射电磁波的本领.辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布.这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射.为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体.所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射).显然自然界不存在真正的黑体,但许多地物是较好的黑体近似( 在某些波段上).基尔霍夫辐射定律(Kirchhoff),在热平衡状态的物体所辐射的能量与吸收的能量之比与物体本身物性无关,只与波长和温度有关.按照基尔霍夫辐射定律,在一定温度下,黑体必然是辐射本领最大的物体,可叫作完全辐射体.普朗克辐射定律(Planck)则给出了黑体辐射的具体谱分布,在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量为B(λ,T)=2hc2 /λ5 ·1/exp(hc/λRT)-1B(λ,T)—黑体的光谱辐射亮度(W,m-2 ,Sr-1 ,μm-1 )λ—辐射波长(μm)T—黑体绝对温度(K、T=t+273k)C—光速(2.998*108 m·s-1 )h—普朗克常数,6.626*10-34 J·SK—波尔兹曼常数(Bolfzmann),1.380*10-23 J·K-1 基本物理常数由图2.2可以看出:①在一定温度下,黑体的谱辐射亮度存在一个极值,这个极值的位置与温度有关,这就是维恩位移定律(Wien)λm T=2.898*103 (μm·K)λm —最大黑体谱辐射亮度处的波长(μm)T—黑体的绝对温度(K)根据维恩定律,我们可以估算,当T~6000K时,λm 0.48μm(绿色).这就是太阳辐射中大致的最大谱辐射亮度处.当T~300K,λm~9.6μm,这就是地球物体辐射中大致最大谱辐射亮度处.②在任一波长处,高温黑体的谱辐射亮度绝对大于低温黑体的谱辐射亮度,不论这个波长是否是光谱最大辐射亮度处.如果把B(λ,T)对所有的波长积分,同时也对各个辐射方向积分,那么可得到斯特番—波耳兹曼定律(Stefan-Boltzmann),绝对温度为T的黑体单位面积在单位时间内向空间各方向辐射出的总能量为B(T)B(T)=δT4 (W·m-2 )δ为Stefan-Boltzmann常数,等于5.67*10-8 W·m-2 ·K-4 但现实世界不存在这种理想的黑体,那么用什么来刻画这种差异呢?对任一波长,定义发射率为该波长的一个微小波长间隔内,真实物体的辐射能量与同温下的黑体的辐射能量之比.显然发射率为介于0与1之间的正数,一般发射率依赖于物质特性、环境因素及观测条件.如果发射率与波长无关,那么可把物体叫作灰体(grey body),否则叫选择性辐射体.。
3.黑体辐射有什么应用
他的意义在于他是一个基本的理论,很多理论推导都要用到它。(自身实际应用价值并不大,因为它是一个理想化的理论)
下面举一例说明:
A21/B21=8πhv3/C3 这是激光原理的一个基本理论(学过激光原理的话你会知道这个关系式很重要)。
其中A21是物质自发辐射系数;B21是受激发射系数。
然而这个关系式的推导过程就要用到黑体辐射的能量密度公式——P=8πhv3/C3*1/ehv/kt-1.
这就是他的意义。
4.19世纪上半期,黑体辐射理论的研究有哪些重要进展
热辐射是19世纪发展起来的一门新学科,它的研究得到了热力学和光谱学的支持,同时用到 了电磁学和光学的新兴技术,因此发展很快.到19世纪末,由这个领域又打开了一个缺口,即 关于黑体辐射的研究,导致了量子论的诞生
量子论是现代物理学的两大基石之一。量子论给我们提供了新的关于自然界的表述方法和思考方法。量子论揭示了微观物质世界的基本规律,为原子物理学、固体物理学、核物理学和粒子物理学奠定了理论基础。它能很好地解释原子结构、原子光谱的规律性、化学元素的性质、光的吸收与辐射等
5.高中物理,关于黑体辐射
黑体本身定义是至吸收电磁波不发射电磁波的一个物体。电磁波是有能量的,吸收电磁波就是吸收能量,没法转化成机械能,只能以热能形式储存起来,所以呢,温度就会变化。自然界这种东西几乎没有,除了黑洞貌似。人们要做关于黑体方面的实验需要一个黑体呀,所以就做了个上面说的东西,类似黑体,大部分的都吸收了,但肯定有跑出来的。因为吸收不可能百分百,总会有些反射,就是纯黑色的也是如此,相信我。
辐射就是发出电磁波,或者能量。比如一个很热的物体在向外散发热量,你可以这么描述,它在辐射热能。
那就话是普朗克黑体辐射公式的语言翻译,可以不用理。这个规律还是做实验才发现的,生活中不易观察到的。
转载请注明出处众文网 » 黑体辐射毕业论文(宇宙微波背景辐射论文)