1.人工神经网络的论文
神经网络的是我的毕业论文的一部分4.人工神经网络 人的思维有逻辑性和直观性两种不同的基本方式。
逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。
然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。
虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。4.1人工神经网络学习的原理 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。
现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。
首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。
这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。 如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。
如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。
当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
4.2人工神经网络的优缺点 人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理 因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。
(2)可学习性 一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。(3)鲁棒性和容错性 由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。
而且克服了传统专家系统中存在的“知识窄台阶”问题。(4)泛化能力 人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。
它能充分逼近复杂的非线形关系。当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。
(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。
(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。
(4)神经网络的理论和学习算法还有待于进一步完善和提高。4.3神经网络的发展趋势及在柴油机故障诊断中的可行性 神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。
神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点) 之间的相互作用而进行的。由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。
它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。通过对经验样本的学习,将专家。
2.基于模拟退火算法的BP神经网络学习方法
模拟退火优化BP神经网络在SMT片式元件焊点质量评价中的应用摘要:针对SMT(surface mount technology:表面组装技术)片式元件焊点缺陷类别繁多、缺陷原因复杂的问题,本文采用模拟退火算法(Simulated annealing)和BP神经网络相结合的方法建立了SMT片式元件焊点质量评价的模型,并应用这个模型对生产现场采集的片式元件焊点样本数据为例进行分析评价。
结果表明,该方法可以准确的、快速的对焊点缺陷进行识别,从而为焊点质量评价奠定基础。关键词:模拟退火算法 BP神经网络算法 焊点 缺陷 Abstract: There are many kinds of default of SMT (Surface Mount Technology) solder joints, and the reasons of these default solder joints are rather complex. This paper combines simulated annealing with BPNN to establish a SMT solder joint estimate model, and apply it to inspect the test sample which from the product line. The result show that the SABP can check out the types of default solder joint quickly.Keywords: Simulated annealing BP neural networks Solder joint Default引言焊点作为连接元器件与印制板的中介,起着电气互联与机械支撑的作用,焊点的好坏直接影响着电路板的工作状态。
焊点缺陷类型繁多、缺陷类型难于识别、缺陷原因错综复杂,难于处理[1]。目前SMT生产线焊点检测一般采用在线测试为主,关键工序使用光学检测设备或者借助人工目检的方法进行焊点检测。
这种方法过于依赖人工,不能做到完全可靠的对焊点质量进行鉴别。而智能鉴别方法通过学习大量样本,获取样本特征信息与因果关系,能够做到对焊点缺陷可靠的鉴别。
BP神经网络自上世纪90年代以来发展比较快速、应用较为广泛的一种网络,这个网络由大量神经元有机组合而成的一个具有高度自适应的非线性系统,它通过大量样本学习来挖掘隐含在样本的因果关系,因而可以表达复杂的非线性关系。但是由于采用梯度训练法,不可避免地存在易陷入局部最小的问题。
对于神经网络的改进方法有很多种,如变步长法、变尺度法、积累误差校正法、与遗传算法相结合的改进方法,这些改进方法相对标准BP算法有了一定程度的提高,但是在收敛速度与精度方面不能达到要求,或者操作方法比较复杂。本文采用SABP(模拟退火优化BP神经网络)方法建立了SMT片式元件焊点质量评价的模型,并应用这个模型对生产现场采集的焊点样本数据进行分析评价。
结果表明,该方法可以较好的、快速的完成对焊点质量的评价。
3.数据挖掘中关于神经网络的论文怎么写
我给你发个摘要吧随着4G时代的到来,电信市场的竞争越来越激烈,客户资源成为电信企业竞争的焦点。
而客户消费行为规律是客户知识的重要组成部分,因此基于消费行为认知的客户细分就成为电信企业客户关系管理的重头戏。利用数据挖掘算法针对某一具体的客户消费数据集进行分析,挖掘出有趣的信息,并根据这些有趣的结论进一步调整企业的营销策略。
本文针对当前电信企业在4G客户细分方面的不足,结合电信企业客户的特征通过关联分析来实现对电信企业现有客户的细分,帮助电信企业实现电信客户的合理分类,从而对电信企业的营销策略提出指导性意见。通过对某一运营商的4G客户数据库进行分析,采用Apriori算法发现客户消费行为和消费特点之间有趣的关联规则,并根据这些信息进一步分析,为营销决策者提供一种新的思考问题的视角。
本文的研究思路是对样本数据进行预处理后,将样本数据划分为换4G卡、换4G套餐、换4G终端三大客户群体,再分别计算出月均arpu值、月均mou值、月均dou值,最后利用Clementine软件对三大客户群体的这三个值进行基于MDLP原则的熵分组,得到细分的特征客户群。然后对这些客户群再做进一步的研究,利用Apriori算法产生频繁项集,依据频繁项集产生简单关联规则,挖掘出客户消费行为和细分变量品牌、arpu值、mou值和dou值之间的关联关系,总结出相应的规律,帮助电信企业找到特定消费群体的消费习惯,以此为基础,对所识别出来的消费群体进行有针对性的营销。
4.基于RBF神经网络的时间序列预测研究本科毕业论文,请求帮忙 爱问
我一本正经地胡说一下吧。
多因素时间序列预测是数据挖掘的一个重要研究内容,描述预测指标与影响因素之间存在的潜在关系,被广泛应用于许多领域。经典的预测方法在用于非线性系统预测时有一定的困难,而RBF神经网络具有较好的非线性特性,特别适用于高度非线性系统的处理,为多因素时间序列预测开辟了新的发展空间。
本文对基于RBF神经网络的预测模型进行了深入的研究,并详细研究了对网络输入空间的降维重构。论文主要内容如下: 采用RBF神经网络进行建模训练,并将结果与BP网络比较,仿真实验表明RBF网络的训练速度比BP网络显著加快,具有较好的泛化能力,能有效地应用于多因素时间序列预测。
将灰色关联分析(GRA)引入预处理过程,以消除与预测指标关联度相对小的影响因素,提出了基于GRA的RBF神经网络预测模型的约简,简化了网络结构,提高了预测精度。 针对多因素时间序列各因素之间存在相关性,导致信息重叠的缺点,提出了基于PCA的RBF神经网络预测模型的约简。
文中利用PCA方法对原有指标体系进行处理,提取主成分构成新的指标作为RBF神经网络的输入,优化了网络结构,提高了网络的泛化能力。 将上述两种约简方法相结合,提出了基于GRA-PCA的RBF神经网络预测模型的约简,减少了采集样本数目,提高了建模效率和预测精度。
5.我要写一篇关于粒子群最优化算法(PSO)的论文,还需要一个关于这
摘自:人工智能论坛 1。
引言 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。源于对鸟群捕食的行为研究 PSO同遗传算法类似,是一种基于叠代的优化工具。
系统初始化为一组随机解,通过叠代搜寻最优值。但是并没有遗传算法用的交叉(crossover)以及变异(mutation)。
而是粒子在解空间追随最优的粒子进行搜索。详细的步骤以后的章节介绍 同遗传算法比较,PSO的优势在于简单容易实现并且没有许多参数需要调整。
目前已广泛应用于函数优化,神经网络训练,模糊系统控制以及其他遗传算法的应用领域 2。 背景: 人工生命 "人工生命"是来研究具有某些生命基本特征的人工系统。
人工生命包括两方面的内容 1。 研究如何利用计算技术研究生物现象 2。
研究如何利用生物技术研究计算问题 我们现在关注的是第二部分的内容。 现在已经有很多源于生物现象的计算技巧。
例如, 人工神经网络是简化的大脑模型。 遗传算法是模拟基因进化过程的。
现在我们讨论另一种生物系统- 社会系统。 更确切的是, 在由简单个体组成的群落与环境以及个体之间的互动行为。
也可称做"群智能"(swarm intelligence)。 这些模拟系统利用局部信息从而可能产生不可预测的群体行为 例如floys 和 boids, 他们都用来模拟鱼群和鸟群的运动规律, 主要用于计算机视觉和计算机辅助设计。
在计算智能(computational intelligence)领域有两种基于群智能的算法。 蚁群算法(ant colony optimization)和粒子群算法(particle swarm optimization)。
前者是对蚂蚁群落食物采集过程的模拟。 已经成功运用在很多离散优化问题上。
粒子群优化算法(PSO) 也是起源对简单社会系统的模拟。 最初设想是模拟鸟群觅食的过程。
但后来发现PSO是一种很好的优化工具。 3。
算法介绍 如前所述,PSO模拟鸟群的捕食行为。设想这样一个场景:一群鸟在随机搜索食物。
在这个区域里只有一块食物。所有的鸟都不知道食物在那里。
但是他们知道当前的位置离食物还有多远。 那么找到食物的最优策略是什么呢。
最简单有效的就是搜寻目前离食物最近的鸟的周围区域。 PSO从这种模型中得到启示并用于解决优化问题。
PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。
所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。 然后粒子们就追随当前的最优粒子在解空间中搜索 PSO 初始化为一群随机粒子(随机解)。
然后通过叠代找到最优解。在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。
第一个就是粒子本身所找到的最优解。这个解叫做个体极值pBest。
另一个极值是整个种群目前找到的最优解。 这个极值是全局极值gBest。
另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (a) present[] = persent[] + v[] (b) v[] 是粒子的速度, persent[] 是当前粒子的位置。
pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数。 c1, c2 是学习因子。
通常 c1 = c2 = 2。 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained 在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax 4。
遗传算法和 PSO 的比较 大多数演化计算技术都是用同样的过程 1。 种群随机初始化 2。
对种群内的每一个个体计算适应值(fitness value)。适应值与最优解的距离直接有关 3。
种群根据适应值进行复制 4。 如果终止条件满足的话,就停止,否则转步骤2 从以上步骤,我们可以看到PSO和GA有很多共同之处。
两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。两个系统都不是保证一定找到最优解 但是,PSO 没有遗传操作如交叉(crossover)和变异(mutation)。
而是根据自己的速度来决定搜索。粒子还有一个重要的特点,就是有记忆。
与遗传算法比较, PSO 的信息共享机制是很不同的。 在遗传算法中,染色体(chromosomes) 互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。
在PSO中, 只有gBest (or lBest) 给出信息给其他的粒子, 这是单向的信息流动。 整个搜索更新过程是跟随当前最优解的过程。
与遗传。
6.神经网络算法
Introduction --------------------------------------------------------------------------------神经网络是新技术领域中的一个时尚词汇。
很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。
“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。
一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。
在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构。The neuron --------------------------------------------------------------------------------虽然已经确认在我们的大脑中有大约50至500种不同的神经元,但它们大部份都是基于基本神经元的特别细胞。
基本神经元包含有synapses、soma、axon及dendrites。Synapses负责神经元之间的连接,它们不是直接物理上连接的,而是它们之间有一个很小的空隙允许电子讯号从一个神经元跳到另一个神经元。
然后这些电子讯号会交给soma处理及以其内部电子讯号将处理结果传递给axon。而axon会将这些讯号分发给dendrites。
最后,dendrites带着这些讯号再交给其它的synapses,再继续下一个循环。如同生物学上的基本神经元,人工的神经网络也有基本的神经元。
每个神经元有特定数量的输入,也会为每个神经元设定权重(weight)。权重是对所输入的资料的重要性的一个指标。
然后,神经元会计算出权重合计值(net value),而权重合计值就是将所有输入乘以它们的权重的合计。每个神经元都有它们各自的临界值(threshold),而当权重合计值大于临界值时,神经元会输出1。
相反,则输出0。最后,输出会被传送给与该神经元连接的其它神经元继续剩余的计算。
Learning --------------------------------------------------------------------------------正如上述所写,问题的核心是权重及临界值是该如何设定的呢?世界上有很多不同的训练方式,就如网络类型一样多。但有些比较出名的包括back-propagation, delta rule及Kohonen训练模式。
由于结构体系的不同,训练的规则也不相同,但大部份的规则可以被分为二大类别 - 监管的及非监管的。监管方式的训练规则需要“教师”告诉他们特定的输入应该作出怎样的输出。
然后训练规则会调整所有需要的权重值(这是网络中是非常复杂的),而整个过程会重头开始直至数据可以被网络正确的分析出来。监管方式的训练模式包括有back-propagation及delta rule。
非监管方式的规则无需教师,因为他们所产生的输出会被进一步评估。Architecture --------------------------------------------------------------------------------在神经网络中,遵守明确的规则一词是最“模糊不清”的。
因为有太多不同种类的网络,由简单的布尔网络(Perceptrons),至复杂的自我调整网络(Kohonen),至热动态性网络模型(Boltzmann machines)!而这些,都遵守一个网络体系结构的标准。一个网络包括有多个神经元“层”,输入层、隐蔽层及输出层。
输入层负责接收输入及分发到隐蔽层(因为用户看不见这些层,所以见做隐蔽层)。这些隐蔽层负责所需的计算及输出结果给输出层,而用户则可以看到最终结果。
现在,为免混淆,不会在这里更深入的探讨体系结构这一话题。对于不同神经网络的更多详细资料可以看Generation5 essays尽管我们讨论过神经元、训练及体系结构,但我们还不清楚神经网络实际做些什么。
The Function of ANNs --------------------------------------------------------------------------------神经网络被设计为与图案一起工作 - 它们可以被分为分类式或联想式。分类式网络可以接受一组数,然后将其分类。
例如ONR程序接受一个数字的影象而输出这个数字。或者PPDA32程序接受一个坐标而将它分类成A类或B类(类别是由所提供的训练决定的)。
更多实际用途可以看Applications in the Military中的军事雷达,该雷达可以分别出车辆或树。联想模式接受一组数而输出另一组。
例如HIR程序接受一个‘脏’图像而输出一个它所学过而最接近的一个图像。联想模式更可应用于复杂的应用程序,如签名、面部、指纹识别等。
The Ups and Downs of Neural Networks --------------------------------------------------------------------------------神经网络在这个领域中有很多优点,使得它越来越流行。它在类型分类/识别方面非常出色。
神经网络可以处理例外及不正常的输入数据,这对于很多系统都很重要(例如雷达及声波定位系统)。很多神经网络都是模仿生物神经网络的,即是他们仿照大脑的运作方式工作。
神经网络也得助于神经系统科学的发展,使它可以像人类一样准确地辨别物件而有电脑的速度!前途是光明的,但现在。是的,神经网络也有些不好的地方。
这通常都是因为缺乏足够强大的硬件。神经网络的力量源自于以并行方式处理资讯,即是同时处理多项数据。
因此,要一个。
转载请注明出处众文网 » 神经网络算法毕业论文