1.高频功放电路的毕业论文
射频识别电路中高频功放的设计王兴君1,殷兴光2,孙 瑜2,吴玮玮1,王宏刚1(1.陕西国防学院电路设计研究所 陕西西安 710302; 2.陕西科技大学电气与电子工程学院 陕西咸阳 712081)摘 要:分析了射频识别电路中高频功放的特点,在此基础上提出了一种新型的高频功放电路,并对他的工作原理进行了分析。
关键词:射频识别电路;高频功放;设计;谐振电路中图分类号: TN710 文献标识码: B 文章编号: 1004 373X (2004) 09 064 02Design of a High Frequency Power Amplification in the Radio Frequency Spot CircuitWANG Xingjun1, YIN Xingguang2, SUN Yu2, WU Weiwei1, WANG Honggang1(1.Circuits Design Institute of Shaanxi Institute of National Defence, Xi′an, 710302, China;2.Shaanxi University of Science &Technology, Xianyang, 712081, China)Abstract: This paper analysis the feature of high frequency power amplification in the radio frequency spot circuit, then gives anew kind of circuit on it and introduces its principle.Keywords: RFID; high frequency power amplification; design; resonance circuit收稿日期: 2003 12 29 射频识别技术是20世纪80年代初发展起来的一种先进的识别技术,经过十几年的发展,已在各行各业,尤其是电子信息行业得到了广泛的应用。射频识别是一种非接触式的自动识别技术,他通过射频信号自动识别目标对象并获取相关数据,识别工作无需人工干预,可工作于各种恶劣环境。
射频识别系统由阅读器和应答器(标签)构成。当他工作时,阅读器通过天线发送出一定频率的射频信号,当标签进入磁场时产生感应电流从而获得能量,发送出自身编码等信息被读取器读取并解码后送至电脑主机进行有关处理[1]。
高频功率放大器是阅读器的关键部件,主要功能是对标签信号的返回信号进行功率放大。1 工作原理图1为射频识别电路中的高频功率放大器原理框图。
13.56 MHz输入方波信号经功率放大器放大输出一个方波信号,再经过阻抗变换网络一部分在天线负载产生高频输出交流电压,从天线发射出去。另外一部分通过检波电路解调出有用信号输出[2]。
图1 高频功放原理框图图2为高频功率放大器的电路图。各项参数如下:VT1型号: 3DA106A VD型号2AP1VCC=9 VC1=0.01μF L=0.01μH R1=6 kΩC2=550 pF Lb=1.3μHC3=0.01μF LC1=1.3μHC4=0.01μF LC2=1.3μHC5=10 pF图2 高频功放电路图2 单元电路设计(1)选择丙类放大电路如图3所示。
高频谐振功率放大器电路可以工作在A类, B类或C类状态。相比之下C类谐振功放的失真虽不及A类和B类大,但C类适用于输入信号比较大、输出功率大、效率高,节约能源的环境下,因此,在大功率射频功放电路中经常使用[3]。
具体参数如下:①确定功率放大器最佳负载:设晶体管饱和电压为1 V,则:(VCC-VCE(SAT))22P0=(9 - 1)22*3 10.7Ω64,扼流圈的电感量应远大于放大器的等效负载,取:XLC≥10R0= 10*10.7 = 107ΩLC≥XLC2πf0=1072π*13.56*106 1.3μHICM1≥VCMR0=VCC-VCE(SAT)R0=9 - 110.7= 0.74 A 选取θC=70°:α0(70°) = 0.253 α1(70°) = 0.436iCMAX=ICM1α1(70°)=0.740.436= 1.75 AIC0=iCMAX*α0(70°) = 1.75*0.253 = 0.43 APDC=VCCIC0= 9*0.43 = 3.9 VPC=PDC-P0= 3.9 - 3 = 0.9 Wη=P0PDC=33.9 77% 集电极与发射极击穿电压URCEO≥2VCC,即:URCEO≥18 V所以选用三极管3DA106A型。图3 丙类放大电路(2)阻抗变换网络如图4所示。
图4 阻抗变换网络选用阻抗变换网络主要有2个作用:①滤波作用 可以滤除高频脉冲电流中的谐波分量只输出要求信号频率的电压和功率。②阻抗匹配作用 通过振荡回路阻抗的调节,可使振荡回路呈现高频功率所要得最佳阻抗值,从而使高频功放以高效率输出最大功率[4]。
通过并联L1C1回路实现谐振、选频滤波, LC谐振回路工作频率变化不大,带宽范围相对很窄,一般选频放大器的频带Δf与中心频率f0之比从百分之零点几到百分之十左右可知,取Δf/f0=1%,则:BW= 2Δf= 2*f0*1%= 2*13.56*106*1% = 0.271 2 MHZ对应品质因数:Q0=f0BW=13.56*1060.271 2*106= 50 因此L1和C1谐振时:XL=RLQ0=5050= 1ΩL1=XL2πf0=12π*13.56*106= 0.01μHXC1=RLQ0=5050= 1ΩC1=12πf0XC1=12π*13.56*106*1= 0.01μF 由于流过负载RL上的电流为:IL=P0/PL= 3/50 = 0.244 A 则回路线圈应承受的电流峰值为:IL1=Q*2IL= 50*2*0.244 = 17.3 A 其次考虑阻抗变换采用高通L网络将50Ω负载变换为放大器要求的最佳负载10.7Ω,则: Q=RL/R0- 1 = 50/10.7 - 1 = 2 L=RLW0Q=RL2πf0R0=502π*13.56*106*2= 0.29μH C2=1W0QR0=12πf0Q0R0 =12π*13.56*106*2*10.7 = 550 pF完整的电路图中L是电感L1与L2并联的总电感L=L1L2L1+L2=0.01*0.290.01 + 0.29= 0.009 7μH (3)包络检波电路如图5所示。其具体参数如下:①RC≥5 ~ 10W0,取:RC≥5W0=52πf0=52*3.14*13.56*e6= 0.06*106②取Ma= 0.3,RC≤1 -Ma2MaΩMAX,2ΩMAX=BW,ΩMAX=12BW=12*0.272 MHz = 0.136 MHzRC≤1 - 0.320.3*0.136*10-6=1 - 0.090.3*0.136*10-6= 4.77*10-3取R= 5 kΩ,C= 10 pF,。
2.求一份低频功率放大器的毕业设计论文
功率放大电路设计
摘要:本文总结了电子设计实验中常用的几种功率放大电路的设计方案,针对不同的设计要求和设计条件从电路搭建、注意事项及测试结果进行了说明,能满足大多数实验电路设计的需要。
关键词:功率放大;推挽输出;丙类功放
一.前言
在电子电路设计中,很多系统需要对输出信号进行放大,以提高其带负载能力,驱动后级电路,因此就要对信号进行功率放大。功率放大器的主要性能指标有输出功率及效率,其按照电流导通角的不同,可分为甲、乙、丙三类工作状态。甲类放大器电流的通角为180度,适用于小信号低频放大,效率最低;乙类放大器的通角约为90度,适于宽带大功率工作,大多数集成运放的末级输出都采用乙类推挽形式;丙类放大器的电流的通角则小于90度,电流波形失真太大,只适于以调谐回路为负载的窄带放大,但效率较甲、乙类高。【1】
二.电路设计
(一)大电流高摆幅运放
若不考虑成本限制,可直接采用大输出电流、高摆幅运算放大器作为输出级。设计重点在于运放的选择及电路连接。市面上有各种性能的Buffer以及可用以驱动的运放,它们能满足大多数设计的要求。专门的驱动芯片如BUF634,其输出电流达250mA,摆率为2000V/us。美国德州仪器公司也有许多相关产品,如THS3121,输出电流可达450mA,摆率达1500V/us。设计的关键在于芯片的正确使用,由于大多数为电流型运放,故反馈电阻的选取很重要,另外由于处理的是高频信号,所以电源去耦,电路布线方面也须十分注意。经实验测试,THS3121在反馈电阻取470Ω、增益为2时在50Ω负载时小信号-3dB带宽达100MHz,-0.1dB带宽达30MHz,并且在电压峰-峰值为10V的输出状态下,频率大于10MHz时仍无失真现象。
(二)互补对管推挽输出
若对功率放大要求不高,可采用分立元件搭建,以互补对管推挽电路作为输出级。设计的关键在于根据系统要求选择合适的互补对管。互补对管采用2SD667和2SB647,其特征频率为140MHz,集电极功率耗散为0.9W,适合低频功率放大。前级放大负反馈由输出引入,使得通频带更加平坦。
(三)直接功率合成
在手头没有合适的驱动芯片时,可以采用三极管直接搭建,虽在实际应用中较少,但在实验室条件下仍是不错的选择。直接功率合成的先决条件是各路参数要对称。要求VT1和VT2、VT3和VT4参数对称,R2=R3,R4=R5,R11=R12等。输入功率在A点一分为二,分两路分别进行放大,在C点合二为一。
(四)单管丙类功率放大
以上三种都是宽频带非谐振功率放大,效率较低,而在无线通信设计中,效率是发射机的主要性指标之一,丙类谐振功率放大较甲类、乙类相比具有更高的效率。三极管基极采用自给偏压电路,集电极采用RLC并联谐振回路,滤除谐波分量,采用π网络作为输出滤波匹配网络,实际参数值可根据所要求的谐振频率具体设计,在此不赘述。
结语
本文通过对不同条件下功率输出级设计提出相应的方案,并经过实际实验测试,效果良好。但在电子设计实验中,较少涉及电力系统,对信号的功率放大要求不是很高,本文仅对系统中常用的简单功率放大进行总结与实验验证,而实际应用中的功率放大电路远不止如此简单。
参考文献:
【1】董尚斌,等。电子线路(1)。北京:清华大学出版社,2006.
【2】黄根春,等。电子设计教程。北京:电子工业出版社,2007.8.
【3】高吉祥。高频电子线路设计。北京:电子工业出版社,2007.5.
3.50分
高效率音频功率放大器的研制白林景,邵光存,李岸然,常兴连,王振伟(山东省科学院激光研究所,山东济宁 272100) 摘 要:本设计以高效率D类功率放大器为中心,输出开关管采用高速场效应管,连接成互补对称H桥式结构,兼有输出1: 1双变单电路和输出短路保护功能,比较理想地实现了输出功率大于2w,平均效率可达到75%的高效音功率放大器。
关键词:D类音频功率放大器; PWM调制器; H桥功率放大器中图分类号: TN722. 1 文献标识码:A引言全球音频领域数字化的浪潮以及人们对音频节能环保的要求,要求我们尽快研究开发高效、节能、数字化的音频功率放大器。传统的音频功率放大器工作于线性放大区,功率耗散较大,虽然采用推挽输出,仍然很难满足大功率输出;而且需要设计复杂的补偿电路和过流,过压,过热等保护电路。
D类开关音频功率放大器的工作于PWM模式,将音频信号与采样频率比较,经过自然采样,得到脉冲宽度与音频信号幅度成正比例变化的PWM波,经过驱动电路,加到MOS的栅极,控制功率器件的开关,实现放大,放大的PWM信号送入滤波器,还原为音频信号。从而实现大功率高效率的音频功率放大器。
系统电路本文采用H型桥式D类功率放大电路,电路如图一所示。图一 音频功率放大器电路(1) 三角波产生电路利用NE555构成的多谐振荡器以恒流源的方式对电容线性冲、放电产生三角波。
接通电源瞬间,NE555芯片的3脚输出高电平,二极管D2、D3 截止,D1、D4 导通, Vcc通过T1 , T2 , R1 ,D1 对电容C1 恒流充电,当C1 上电压达到2 /3Vcc时,NE555芯片的输出发生翻转,即3脚输出低电平,此时,D2、D3 导通, D1、D4 截止,电容C1 通过D2 , T3 ,T4 , R2 恒流放电,直到C1电压等于1 /3Vcc,电容又开始充电,如此循环,电容C1上可以得到线性度良好的三角波。为了提高带负载能力,输出通过由LM358A组成的电压跟随器。
输出三角波频率的计算:电阻R1 上电压等于T1 的VVbe≈ 0. 7V,故流过R1 的电流I = 0. 7V /300Ω = 2. 33mA,忽略T1 的基极电流,则流过R1 的电流即为T2 的射级电流,约等于T2 的集电极电流,故C1 的充电电流约为2mA,同理, C1 的放电电流约为2mA。设充电时间为t1 ,放电时间为t2 ,则有:23Vcc =13Vcc +i *t1C13Vcc =23Vcc -i *t2C可得三角波的周期: T = t1 + t2 =2Vcc *C3 *i故三角波频率为: f =3 *i2Vcc *C(2)前置放大电路 前置放大电路采用低噪声、高速运放的NE5532运算放大器,组成增益可调的同相宽带放大电路。
功放最大不失真输出时,负载上等效正弦波的电压峰峰值为VP - P ,载波调制的调制波(正弦波)最大峰峰— 27 —值为VP - Pm ax ,对应的调制放大增益为AV2 =VP - PVP - Pm ax,运算放大电路中反馈电阻为R8 ,反相端电阻R7 ,则前置放大器的增益AV1为:AV1 = 1 +R8R7,通过选取调制波的峰值电压VP - Pm ax和调整R8 的阻值,可实现整个功率放大单元的电压增益连续可调。(3)脉宽调制( PWM)电路 采用高速、精密的比较器芯片,以音频信号为调制波,频率为f的三角波为载波,两路信号均加上1 /2Vcc的直流偏置电压,通过比较器进行比较,得到幅值相同,占空比随音频幅度变化的脉冲信号。
(4)驱动电路 驱动电路由施密特触发器芯片和三极管组成,两个三极管组成的互补对称式射极跟随器。PWM信号经过驱动电路后,形成两个前后沿更加陡峭的倒相脉冲,两脉冲之间有一定的死区时间,防止了桥式驱动电路出现直通现象。
(5) H型桥式驱动电路 由场效应管组成的功率开关管和四阶巴特沃兹LC滤波电路组成。T9、T12导通, T10、T11截止时,负载上的电压降VM AB0 =Vcc; T10、T11导通,T9、T12截止时,负载上的电压降VAB = - Vcc,因此,负载上的电压降可达到2倍的电源电压。
解调信号放大后经过LC滤波送到扬声器。(6)短路保护电路 短路(或过流)保护电路采用0. 1过流取样电阻与扬声器串联方式, 0. 1电阻上的取样电压经过由NE5532组成的减法放大器进行放大。
电压放大倍数为:Av =R19R17经放大后的音频信号再通过由D9、C9、R20组成的峰值检波电路,检出幅度电平,送给电压比较器U7的“ + ”端,U7的“—”端电平设置为5. 1v,由R22和稳压管D12组成,比较器接成迟滞比较方式,一旦过载,即可锁定状态。正常工作时,通过0. 1上的最大电流幅度Im =Vcc /(R + 0. 1) , 0. 1上的最大压降为0. 1 *Im ,经放大后输出的电压幅值为Vim *AV = 0. 1 *Im *AV ,检波后的直流电压稍小于此值,此时比较器输出低电平, T13截止,继电器J1不吸合,处于常闭状态,电源Vcc通过常闭触点送给功放。
一旦扬声器两端短路或输入电流过大, 0. 1上电流、电压增大,经过电压放大、峰值检波后,大于比较器反相端电压,则比较器翻转为高电平并自锁, T13导通,继电器吸合,切断功放Vcc电源,功放电路得到保护。R21、C11、D10、D11组成开机延时电路,防止开机瞬间比较器自锁,关机后C11上的电压通过D10快速放掉,以保证再开机时C11的起始电压为零。
讨论D类放大器工作于开关状态,无信号输入时无电流,而导通时,没有直流损耗。事实上由于关。
4.跪求高手指点,毕业论文,音响放大器
在一般情况下,音频和更多的有源音箱,其内部放大器,所以噪音是不可避免的,有源音箱噪音的来源大致可分为电磁干扰,机械噪声和热噪声。
EMI主要可以分为电源变压器干扰和杂散电磁波干扰。在一般情况下,电源变压器干扰是由于多媒体音箱漏磁的力量,效果是非常明显的,你可以最大限度地提高,阻止安装变压器屏蔽的条件下,允许漏磁的铁盾牌型材料的生产。我们应该尽量选择大品牌,用料扎实的产品,另外,使用外部变压器是一个很好的解决方案。的
杂散电磁干扰共同扬声器导线,分频器,无线设备或主机计算机将成为一个干扰源。主扬声器允许的条件下尽可能地远离所述主机计算机,降低周围的无线设备。
一般情况和音频质量的关系,所以说,一定要做好功课,然后再选择声音,听别人的意见,或直接??去试镜,我可以给你一些好的建议你参考对景观和这两个过程可以说对景观的声音低成本,只能说是一点点高于入门级的比准发烧友级水平低。
惠威声音沉闷不增加高音,低音混合漂白。缺乏清晰的认识。红号EX影院,家庭影院BT-AUDIO红号EX非常适合属于美国能源部的声音的声场。世界领先的综合高音喇叭单元技术,可以做一个百分之百无失真,而音场效果的冲击和参与。在保持透明的高音,细腻的声场大,动态对比较为明显,实力雄厚,整体声场的能量,责任心强,可以在影院的声场是堪称经典之作。
采用红木,皮革扬声器填充的宏伟除了不缺雅阁的颜色,红色和黑色的搭配经典的中国风格和美式风格的完美融合,给当地人民群众的整体有一种宏伟的风格,感深稳重,强调的扬声器大师成功的人的身份。
你想帮助
5.关于高频功放电路的论文本人新手没什么分.哪个高手GGJJ帮帮忙啊
高频功率放大器设计及应用 一、前言 二、设计目的及要求 三、详细设计 四、附图 五、高频功率放大器的应用 六、心得体会 七、参考文献 [摘要]: 本文根据《高频电子线路》课中所学到的内容,设计了一种小型通信系统。
放大电路可以说是模拟信号处理电路的基本单元,尤其对高频接收机与发射机而言。 高频功率放大器(简称高频功放)主要用于放大高频信号或高频已调波(即窄带)信号。
由于采用谐振回路作负载,解决了大功率放大时的效率、失真、阻抗匹配等问题,因而高频功率放大器通常又称为谐振功率放大器。就放大过程而言,电路中的功率管是在截止、放大至饱和等区域中工作的,表现出了明显的非线性特性 一、前言 从事电子业而不能熟练操作使用PROTEL电子线路设计软件,实在有点说不过去。
在机械、电子、建筑等行业,使用Protel、MATLAB等计算机软件对产品进行辅助设计在很早以前就已经成为了一种趋势,这类软件的问世也极大地提高了设计人员在机械、电子等行业的产品设计质量与效率。 放大电路可以说是模拟信号处理电路的基本单元,尤其对高频接收机与发射机而言。
放大电路可以说是模拟信号处理电路的基本单元,尤其对高频接收机与发射机而言。高频功率放大器(简称高频功放)主要用于放大高频信号或高频已调波(即窄带)信号。
由于采用谐振回路作负载,解决了大功率放大时的效率、失真、阻抗匹配等问题,因而高频功率放大器通常又称为谐振功率放大器。 就放大过程而言,电路中的功率管是在截止、放大至饱和等区域中工作的,表现出了明显的非线性特性。
但其效果:一方面可以对窄带信号实现不失真放大;另一方面又可以使电压增益随输入信号大小变化,即实现非线性放大。 。
6.跪求一个50w功放电路设计的论文(不是学术论文)
一f、实验目的 1、熟悉数字式频率计8的基本工g作原理。
0、熟悉数字频率计2中1计4数显示4及d控制等部分6的综合设计1及o调试方7法。二z、实验原理数字频率计6是测量电信号频率的仪器之d一m,其原理图如下h所示8: 。
被测信号经过放大o整形成为0脉冲信号,作为7计6数器的计7数脉冲,计8数器受控制门k(闸门k)的控制,闸门e开a启,计1数器开o始对输入s的脉冲信号计5数,若闸门h开x启的时间为71秒,则计7数器累计7的脉冲数就是被测信号的频率。
在闸门e关闭后,停止7计7数,计4数器的状态写入o锁存器,并通过译码器驱动数码管显示6出测量值。这样,当再次测量(计5数)时,数码管可以5保持上r一u次的测得的数据。
三y、实验要求 4、利用216定时器设计7标准秒脉冲发生器电路。 0、译码显示7电路用实验箱中2的四路数码管显示8电路。
四、设计8思路根据实验原理框图,做如下y设计0:信号的放大z部分2可以7用三z极管放大j电路来完成,而整形部分2可用施密特触发器来完成,为8简单起见1,可用247来做。控制门k用一e个a与o门n即可实现。
两个l单稳态触发器完全一u样,均可用777来做。计8数器用11LS260来完成,免去了x接十u进制计6数器的麻烦(若用17LS653)。
锁存电路用四路锁存器86LS85来完成。其输出可直接接到数电箱上y的67LS273译码电路,进而显示6结果。
在这次实验中1,设计8四位频率计8,故需用四个c63LS130和四个n72LS52。五u、实验器件 338定时器 31LS060 76LS18 84LS06 06LS00 电阻、电容若干r六5、设计1思路这里主要说明一n些参数的选择。
对施密特触发器只涉及s到一d个q外接小f电容,典型值为00。02uF。
h抱jbt|。
7.我想一篇关于音响原理的论文,需要知道大量有关音响的知识,哪位可
音响技术词典 A AB制式立体声 立体声拾间方式之一,使用灵敏度和指向性(常用心形指向性)完全相同的两只话筒,彼此相距约为1。
5至2米(也可减少到0。5米,视声源排列宽度而定),置于声源前方拾音,然后分别以左右输出。
优点是简单易行,拾得的声音富有自然感,以时间差为主的拾音方式,而时间差的存在可以反映出较多的音乐厅的早期反身声,现场感好,适合录制古典交响乐。 不足的是如果两话相距较远,听音时会有中间空洞现象和凹陷现象,如果一声源横亘向移动,则会感到声速度较快,有跳跃感,严重时,会使声像集中分布在左右扬声器附近,输出信号频响是梳状滤波器特性形状,致使声音不悦耳。
AC-3解码器 能够译解AC-3编码方式的环绕立体声解码器,分纯AC-3解码兼杜比定向逻辑环绕、AC-3解码兼容THX和杜比定向逻辑环绕三种。 后两种均带AV接口,可以配接多种音/视频信号输入,并有主音量可调节,方便了使用。
纯真AC-3解码是将数字激光唱盘中的数据流解调出来,机器后面板输入端口为AC-3RF射频数据流、数码光缆和同轴信号,输出仅为5。1声道的前置左右、中置、后置环绕左右和超大型低音输出这6个端子,没有AV接口,也不设音量,必须与其他AV功放配合才能正常使用。
AV功放 即视听系统中使用的放大器,用于家庭影院视听系统中,功能齐全。AV功放一般具有前置、中置、环绕等4-7个声道功率输出,有的带有杜比定向逻辑环绕解码器或AC-3解码器、DSP数码声场处理、调频/调幅数字调谐收音地功能,还具有多种音视频输入输出接口,有些功放还有SVIDEO(高清晰度)视频四针接口,各种功能可以用遥控器进行控制,使用非常方便。
艾润公式 计算房间自然混响时间的公式,在塞宾公式的基础上,对房间的自然混响作了进一步精确的分析、推导,解决了塞宾公式在吸音系数较大(大于0。2)时计算误差较大的问题,对各种吸音系数场合都可应用此公式进行混响时间计算。
B BES扬声器 由一个或几个扬声器磁路音圈系统驱动长方形的弯曲聚合物振膜,使振动发声的扬声器。 其振膜由成千上万个紧密压缩的聚乙烯珠构成,这种弯曲膜波片在一定压力下进行热处理,再在规定的环境下冷却制成。
这种具有独特轮廓的膜片,每个部分都在各自的频带内作用,可用一个振膜实现宽频带、无指向的重放。 BTL功率放大器 亦称桥式推挽电路,功率放大器的输出级与扬声器间采用电桥式的联系方式,主要解决OCL、OTL功放效率虽高,但电源利用率不高的问题。
与OCL和OTL功放相比,在相同的工作电压和相同的负载条件下,BTL是它们输出功率的3至4倍,在单电源的情况下,BTL可以不用输出电容,电源的利用率为一般单端推挽电路的两倍,适用于电源电压低而需要获得较大输出功率的场合。 白噪声 整个音频频率范围内,功率密度谱均匀分布且等比例宽度的能量相等的一种噪声,即各个频率幅度值相等的随机噪声,一般用于测试音响设备的频率响应等特性。
板式混响器 亦称金属板的弯曲振动,在混响器的发展历史上具有重要意义,现代混响器中的金属板效果即源于此。利用金属板的弯曲振动,提供适应于各种环境要求的可弯模拟混响特性,钢板混响器是采用一张2米长、1米宽、厚为0。
5至1毫米的钢板,材料和尺寸是严格按照高密度共振频率的要求先择的,钢板由弹簧垂直吊挂在钢架的四个角上,吊装要平衡,否则会影响音色,在信号激励时,一系列变化复杂的振动波就另一个压电陶瓷的拾音器安装在附近或钢板另一面进行拾音,在信号激励时,一系列变化复杂的振动波就向四周辐射出去,并在边界之间来回反射,直至混响状态结束为止。 通过改变混响板与另一块与其大小相同并相互平行的多也阻尼板之间的间隔,可以调节混响时间,两板靠得越近,空气与多也材料的摩擦声能吸收得越多,混响相间也就越短。
钢板混响器体积大而且重,只能固定使用,安装时要有一不定期的隔声和防的防振措拖,此外,它还有声染色现象。 。