1.数形结合在解题中的应用
1. 数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
2. 所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式 。
3. 纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4. 数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。
2.求毕业论文《数形结合思想》的参考文献10篇以上
1000篇都有 [1] 袁桂珍。
数形结合思想方法及其运用[J]。 广西教育 , 2004,(15) 。
[2] 张亮。 数形结合法的几个应用[J]。
井冈山师范学院学报 , 2003,(05) 。 [3] 莫红梅。
谈数形结合在中学数学中的应用[J]。 教育实践与研究 , 2003,(12) 。
[4] 施献慧。 数形结合思想在数学解题中的应用[J]。
云南教育 , 2003,(35) 。 [5] 王银篷。
浅谈数形结合的方法[J]。 中学数学 , 2004,(12) 。
[6] 卢丙仁。 数形结合的思想方法在函数教学中的应用[J]。
开封教育学院学报 , 2003,(04) 。 [7] 郑菊美。
数形结合在中学数学教学中的应用[J]。 丽水师范专科学校学报 , 2003,(02) 。
[8] 刘焕芬。 巧用数形结合思想解题[J]。
数学通报 , 2005,(01) 。 [9] 李晋彪。
谈谈数形结合的实际应用[J]。 太原教育学院学报 , 2003,(03) 。
[10] 王亚亮,宁凤芹。 数形结合法解题教学的意义[J]。
保山师专学报 , 2003,(05) 。 [1] 赵玲。
数形结合思想及其应用[J]。 山西煤炭管理干部学院学报 , 2004,(03) [2] 吴雅平。
浅谈数形结合的解题思想[J]。 山西煤炭管理干部学院学报 , 2004,(01) [3] 廖继红。
愿为群芳过一生[J]。 北京观察 , 1997,(03) [4] 李冬梅, 吉婧。
关于广义Pareto分布的检验[J]。 山西煤炭管理干部学院学报 , 2006,(01) [5] 杨立华。
超越“Trade off”——对公平与效率的几点新思考[J]。 广东行政学院学报 , 2002,(02) [6] 陈婉华。
在数学教学中提高学生的多种能力[J]。 青年探索 , 2005,(06) [7] 郭张龙, 马拴柱, 李为民。
地空导弹部队集火射击模型[J]。 火力与指挥控制 , 2006,(04) [8] 任忠斌, 孙庆珍, 何清华。
区域防空反导火控网的数据融合问题研究[J]。 现代防御技术 , 2005,(06) [9] 尹雪峰, 张亚春。
学习微积分应了解的几个问题[J]。 山西煤炭管理干部学院学报 , 2002,(04) [10] 陈喜娥, 尹雪峰。
浅谈数学思想方法的培养[J]。 山西煤炭管理干部学院学报 , 2006,(02) [1] 钱常宝,钱小吾。
高职数学课堂教学中情感因素的激励作用[J]镇江高专学报 , 2006,(03) 。 [1] 杨慧娟。
“数学表示”的建构主义特征分析[J]重庆师范学院学报(自然科学版) , 2002,(02) 。 [2] 董涛。
建构主义视野中的数学概念教学[J]曲阜师范大学学报(自然科学版) , 2004,(02) 。 [1] 陈福建。
函数教学中的建构主义构想与数形结合思想[J]镇江高专学报 , 2005,(03) 。 。
3.谁能帮帮我
主要参考文献
[1]赵振威,章士藻.中学数学教材教法[M].上海:华东师范大学出版社,1991.
[2]任志鸿,徐明.三年高考两年模拟[M].北京:学苑出版社,2006,23,45.
[3]卫晓东.数学教师招聘考试一本通[M].北京:中国出版集团现代教育出版社,2010,182-183.
[4]徐国央.数形结合思想在数学解题中的应用[J].宁波教育学院学报, 2009,01.
[5]杨琴.高等数学教学中应重视数形结合思想的作用[J].才智,2009,15.
[6]刘雨智.浅谈数形结合在解题中的应用[J].各界(科技与教育),2009,02.
[7]邱春来.数形结合法的应用及误差[J].福建中学数学,2004,2:29-31.
[8]林玉粦.用数形结合求函数的最值[J].福建中学数学,2001,4:24-25.
[9]苏元东.浅谈“以形助数”解题[J].福建中学数学,2005,2:27-28.
[10]朱恩九.“以形辅数”的解题途径[J].数学通报,1994,4:33-35.
[11]江东正,黄甲锋.不同的问题相同的数学模型[J].北京中小学数学报,2002,7-8:34,39.
[12]叶柏团.浅谈数学思想方法在数列解题中的应用[J].福建教育学院学报,2003,6:92 - 93.
4.高一数学 数形结合 800字论文
数形结合是根据数量与图形之间的关系,认识研究对象的数学特征、寻找解决问题的一种数学思想。
通常情况下,在应用数形结合思想方法解决问题时,往往偏重于"形"对"数"的作用,也就是经常地利用图形的直观性来解决某些数学问题。 数形结合思想方法是近些年来高考重点考查的思想方法之一,每年的高考试题(特别是客观题)能够用此方法解决者均占相当的比例。
其特点是形象、直观、快捷,因此是高考备考中应予重视的重要数学解题方法。 例1 (1995年全国理)已知I为全集,集合M、NI,若M∩N=N,则( ) A、B、M C、D、 分析:集合M、N比较抽象,欲具体考察其关系有困难,若能借助集合的图示(文氏图),就能化抽象为具体,故可作出文氏图加以解决。
可作出文氏图加以解决: 解:用文氏图来表示M、N(如图1),显然CIMCIN ,故选C 评注:对于抽象集合问题,只须按题设作出文氏图即可解决。 例2、(2003年新课程理) 设函数f(x)=,若f(x)>1,则x0的取值范围是 A.(-1,1) B.(-1,+∞) C.(-∞,-2)∪ (0,+∞) D.(-∞,-1)∪ (1,+∞) 分析:常规思路:分段函数进行分段处理,因为f(x0)>1,当x0≤0时,2-x0-1>1,2-x0>2,∴x00时,∴x0>1 综上,x0的取值范围是(-∞,-1)∪(1,+∞) 本题若作出函数图象,就能回避分类讨论。
解:首先画出函数y=f(x)与y=1的图象(图2),结合图象,关注选项特征,易得f(x)>1时,所对应的x的取值范围,选D。 评注:对于与分段函数相联系的相关问题(如不等式,最值),均可借助图象法优化解题,另外,对于一些简单不等式,特别是解无理不等式,抽象不等式,均可考虑数形结合法,请看例3 。
例3、(1)已知奇函数f(x)的定义域为{x|x≠0,x∈R},且在(0,+∞)上单调递增,若f(1)=0,则满足x·f(x) (2)解不等式>x+1 分析(1):函数f(x)比较抽象,欲化归为具体目标不等式困难,注意到x·f(x) 解:作出符合条件的一个函数图象(示意图)如图3,观察图象易知,满足x·f(x) 分析(2):令y1=的图象为C1,y2=x+1的图象为C2,则解不等式就归结为寻求C1在C2上方时x的取值范围。 解:在同一坐标系内分别作出y1=和y2=x+1的图象(图4),由=x+1解得A(2,3),观察图象易得原不等式的解集{x|- ≤x 例4、(2004年上海)若函数f(x)=a|x-b|+2在[0,+∞)上为增函数, 则实数a,b的取值范围是______。
分析:①当a>0时,需x-b恒为非负数,满足题意,即a>0,b≤0。 ②当a 综合①②知a>0且b≤0。
这是给出的参考答案,本题若能从函数f(x)的图象考虑,不难迅速确定答案。 解:先作出函数f(x)的图象,由图象变换理论,只须将O(0,0)移至O'(b,0),在新系下,只须作出y=a|x|+2图象,若b>0,结合图象知,f(x)在[0,+∞)不单调。
∴b≤0,此时要使f(x)在[0,+∞)递增,结合图象分析得a>0。 评注:图象法是解决函数单调性问题的最基本方法。
例5、(2004年上海)已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间的距离为8,f(x)=f1(x)+f2(x) (1)求函数f(x)的表达式。 (2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解。
分析:由(1) ∴方程f(x)=f(a)即为,若去分母则得到关于x的三次方程,从“数”上处理较难,若能从“形”上考虑,“数形结合”问题可找到解决的方案。 解(2):由f(x)=f(a)得,在同一坐标系内作出f2(x)=和f3(x)=+的大致图象(图5),易知f2(x)与f3(x)在第三象限只有一个交点,即f(x)=f(a)有一个负数解。
又f2(2)=4,f3(2)=+-4 当a>3时, ∴当a>3时,在第 一象限f3(x)的图象上存在 点(2,f3 (2))在f2(x)图象的上方。 ∴f2(x)与f3(x)在第一象限有两个交点,即f(x)=f(a)有两个正数解。
因此,方程f(x)=f(a),有三个实数解。 评注:关于方程根的个数问题,使用数形结合处理比较方便、直观。
综上,从内容上讲,可以用数形结合思想方法解决的问题,主要有以下几类: (1)集合的图示; (2)与函数性质有关的问题; (3)与方程、不等式有关的问题; (4)最值问题; (5)与解析几何有关的问题。 在使用数形结合方法时,要注意以下两点: (1)数形结合常用来解选择题,填空题,属简缩思维模式,若用来处理解答题,要特别注意说理的严密性,如例5中两函数在第 一象限的交点的说明。
(2)在数形结合时,要注意对函数的优化选择,达到简洁、容易的目的,如将函数转化为=+处理。
5.什么是数形结合思想
中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。 恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”
数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。 “数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。
华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。 数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。 。
6.求助:论文简谈化归思想在数学解题中的应用开题报告 急
化归思想是初中数学中常见的一种思想方法。
“化归”是转化和归结的简称。我们在处理和解决数学问题时,总的指导思想是把问题转化为能够解决的问题,这就是化归思想。
正如古之“围魏救赵”是战史上“避实就虚”的典型战例,军事上的这种策略思想迁移到数学解题方面,可以这样理解它:“实”是指繁、难、隐蔽、曲折,“虚”是指简、易、明显、径直。在解题中表现为:化难为易,避繁从简,转暗为明,化生为熟。
具体的说,即把生疏的问题转化为熟悉的问题,把抽象的问题转化为具体的问题,把复杂的问题转化为简单的问题,把一般的问题转化为特殊的问题,把高次的问题转化为低次的问题,把未知转化为已知,把一个综合的问题转化为几个基本的问题等等。
7.论文课题:化归思想在数学中的应用.没思路,懂的人给我些提示啊.什
数形结合思想在解题中的应用 1.数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.2.所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义.如等式 .3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”.4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在求复数和三角函数解题中,运用数形结思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程.这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野.化归思想 化归思想就是化未知为已知,化繁为简,化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系 数法,配方法,整体代人法以及化动为静,由抽象到具体等转化思想 例1 鸡兔同笼,笼中有头50,有足140,问鸡、兔各有几只?分析 化归的实质是不断变更问题,这里可以先对已知成分进行变形.每只鸡有2只脚,每只兔有4只脚,这是问题中不言而喻的已知成分.现在对问题中的已知成分进行变形:“一声令下”,要求每只鸡悬起一只脚(呈金鸡独立状),又要求每只兔悬起两只前脚(呈玉兔拜月状).那么,笼中仍有头50,而脚只剩下70只了,并且,这时鸡的头数与足数相等,而兔的足数与兔的头数不等有一头兔,就多出一只脚,现在有头50,有足70,这就说明有兔20头,有鸡30头 整体代换 整体代换是运用整体思想处理问题的一种方法,其基本思想是把问题中的某些对象作为一个整体考虑,从而发现问题的内在联系,找到求解的思路.运用整体思想解题的关键是“整体”的选择与确定.现以近几年来的中考题为例,说明整体代换的应用.。
8.小学数学教学中如何应用数形结合思想的研究
一、研究背景:数学是研究客观世界的空间形式与数量关系的科学,数是形的抽象概括,形是数的直观表现。
华罗庚先生指出,数缺形时少直观,形少数时难入微。数形结合既是一个重要的数学思想,又是一种常用的数学方法。
数形结合在数学解题中有重要的指导意义,这种“数”与“形”的信息转换,相互渗透,即数量问题和图象性质是可以相互转化的,这不仅可以使一些题目的解决简捷明快,同时还可以大大开拓我们的解题思路,为研究和探求数学问题开辟了一条重要的途径。长期以来,在教学中数学知识是一条明线,得到数学教师的重视;数学思想方法是一条暗线,容易被教师所忽视。
在我们的小学数学教学中,如果教师能有意识地运用数形结合思想来设计教学,那将非常有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生将实际问题转化为数学问题的能力。“数形结合”对教师来说是一种教学方法、教学策略,对学生来说是一种学习方法,如果长期渗透,运用恰当,则使学生形成良好的数学意识和思想,长期稳固地作用于学生的数学学习生涯中。
作为一线教师,如何系统的运用数形结合思想进行数学教学,是我们面临的一个极富实践价值的重要课题。二、研究价值:1、通过组织、实施本课题的研究,提高教师对数形结合思想的理解,加深对教材中数形结合思想的分析能力。
能在平时的教学中,时刻注意渗透数形结合思想,提升教师自身的专业素养。2、通过组织、实施本课题的研究,提升学生的思维水平,提高学生应用数形结合思想解决实际问题的能力,以适应未来社会发展的需要。
三、研究目标: 1、教师有意识地运用数形结合思想进行教学设计,化抽象为形象,创造性地开发课程资源,有效地提高课堂教学质量。 2、研究“数形结合”在小学数学四至六年级领域中的应用,分阶段、有层次的渗透数形结合思想。
3、通过“数形结合”有效地提高学生学习数学的兴趣,使数形结合成为学生重要的学习方法,能运用数形结合创造性地解决抽象的数学问题。在不断地“探索”与“创造”中构建属于个人的数学思想。
四、概念界定:1、数形结合:“数”和“形”是数学中两个最基本的概念,“数”,属于数学抽象思维范畴,是人的左脑思维的产物;而“形”主要指几何图形,属于形象思维范畴,是人的右脑思维的产物。它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述。
数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,化难为易,化抽象为直观.使人充分运用左、右脑的思维功能,相互依存、彼此激发,全面、协调、深入发展人的思维能力。2、数形结合思想:所谓数形结合思想,其实质是将抽象的数学语言与直观的图像结合起来,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法。
主要有以下几种解题思路:(1)以“数”变“形”;(2)以“形”变“数”;(3)“形”“数”互变。3.“渗透”指某种思想方法在某个实践过程中逐渐的渗入利用,这里主要指在小学数学课堂教学中逐步渗透数形结合思想方法。
五、研究内容:1、数形结合思想在“数与代数”知识领域中的应用。2、数形结合思想在“空间与图形”知识领域中的应用。
3、数形结合思想在“统计与概率”知识领域中的应用。4、数形结合思想在“实践与综合运用”知识领域中的应用。
六、研究思路:1、学习查找相关理论资料;2、开始分年级教师进行具体研究;3、在具体的实践中进一步完善研究内容和研究措施;4、最后对研究效果进行提升,形成课题成果报告。七、研究方法:1.调查法:调查当前小学数学教师对数形结合思想在教学中渗透的认识,调查当前学生对数形结合思想来解题的认识状态。
2、文献研究法:收集、学习、整理有关渗透数学思想方法以及数形结合思想的相关文献资料并加以分析,以供实验研究。3、案例研究法:选择不同领域的教学内容(数与代数、空间与图形、统计与概率、实践与综合运用)中的素材,作为案例进行分析研究,寻求在不同数学学习领域中有效渗透数形结合思想的途径与模式。
4、经验总结法:把实验过程中积累的经验加以总结、归纳并在实验过程中加以论证。
转载请注明出处众文网 » 数形结合在解题中的应用毕业论文