1.我是本科毕业论文是关于调查分析的,里面的数据,分析我都是自己
数据最好不要自己编。调查分析类的软件(如果你是学营销或管理学的)可以用SPSS。一般人编的数据数据分析结果都能看出端倪来的,老师都不是傻子,到时候一旦被看出来你就会很难过了。
一般情况下,答辩过程中老师不会让你演示数据的分析过程,但一般会问到你你的论文理论基础,数据是如何收集的(即通过哪些途径收集的),你的问卷设计,数据分析结果,得出结论等。
还是哪句话,一般不是长期做学术或很有经验的人,编的数据结果都很明显的能看出端倪的。建议不要数据造假,学术上是最鄙视也不能接受的。这是比你论文框架错了还要严重的错误。
2.调查问卷的数据分析该怎么写
一、问卷类型
问卷调查分为两大类:即量表问卷和非量表问卷。
量表问卷通常更多用于学术研究,其特点在于更多的态度认知题项,体现样本人群对于某事物的态度看法态度情况等,通过对各研究变量的关系研究,找出其中内涵逻辑关系。
非量表问卷更多体现对某现状的事实情况和基本态度调研,比如样本进行网购的原因,不进行网购原因,网购平台的使用现状情况等。此类问卷更多在于分析思路的逻辑和现状情况的了解分析,以及样本的基本态度情况。
二、分析方法
从分析方法上,量表类问卷最大的特点是:非常多的量表题,而且量表题对应着‘变量’或者‘维度’。便于研究‘变量’间的关系情况。以及可以使用信度、效度、因子分析等方法。
非量表题其最大的特点为大部分为单选题、多选题或者排序填空题等,但很少 有出现量表题(是量表题是指类似答项为“非常不同意”,“比较不同意”,“中立”,“比较同意”和 “非常同意”之类的问题)更多是使用基本频数分析和交叉分析等,同时使用图形和表格进行多样化展示。
三、分析结果
问卷数据一般使用SPSS进行分析即可,分析基础比较薄弱,可使用SPSSAU进行分析。SPSSAU分析结果生成的是“类三线表”的格式,系统会自动生成指标解读报告。
SPSSAU智能分析
四、撰写调研报告
根据问卷分析顺序将分析结果写成有逻辑性的报告,并且在结论基础上对应提出有意义有价值的建议措施等。
关于数据报告的撰写,单独从数据分析角度上看,建议以实际需求出发,比如研究差异关系,那么首先得需要知道有没有差异,接着有了差异,具体差异情况如何。有了差异或者没有差异时,对应的建议措施应该如何。按照这样的思路,相信数据研究报告的撰写并非难事。
3.问卷调查的数据分析
1. 设计问卷
问题条款不要太多,多则调查效果不好。与你调研目的关联不大的项目都可不考虑,如性别、职业、旅游偏好等。
每条问题的选项要符合完整性,几项选择要不重复、不遗漏、同等级。
根据你的需求,至少需要有年龄段划分、旅游消费、停留天数等项目,应当考虑从旅游六要素细分游客花费结构。
2. 实施调查
设计抽样调查实施方式、实施场所、样本空间等问题,力求保证调查的时空分布随机性、样本空间代表性。
3. 数据录入
建议用excel,简单实用,功能足够,不建议用spss,华而不实,操作繁琐,不够灵活。
4. 数据处理
初等数学就差不多够用了,求和、求均值、求差求比,简单的侧重于市场份额和市场增长率两方面就能得出很多有用的结论,若精力、技术足够,建议用一些稍微高级一点点地数据模型算法等等,然后制成图表。
5. 调研分析
根据数据结果,结合相关的宏观旅游数据,提出自己的观点,引用自己的数据论证。
说的有点简单,实际上是一门学问,作好了很难,做简单了很容易,如果会用数理统计,数据前期预处理做点数据标准化、信度效度校验,初步建模后作个误差校验,即便不做误差反馈,估计应付个硕博论文什么的是没什么问题的。
4.问卷调查数据分析方法有哪些
一、数据分析思维
首先学会做基础数据分析并不难,掌握一些必要的知识就能很快上手,学习数据分析的路径如下共三部曲:数据类型的识别、研究方法的选择、结果分析。
(1) 数据类型的识别
数据类型是一切研究的基石,也是数据研究思维的最基本且最关键的思维。确认数据的真实准确性后,即完成数据清理后,可对数据类型进行区分,一切数据均可分为两种类型,包括定性数据和定量数据。
· 定量:数字有比较意义,比如数字越大代表满意度越高,量表为典型定量数据
· 定类:数字无比较意义,比如性别,1代表男,2代表女
(2)研究方法的选择
数据类型确认后,此时即可理解数据分析方法的选择。像SPSSAU在设计时,区分数据类型的同时,还区分X和Y。比如性别和是否吸烟的关系,X是性别,Y为是否吸烟。X和Y均为定类数据。此时则应该选择“交叉卡方”分析。
第一步即选对研究方法,即数据类型的识别。
第二步即结合研究目的进行分析,常见的研究目的包括:数据基本描述、影响关系研究、差异关系研究及其它关系。
请点击输入图片描述
(3)分析结果
分析基础比较薄弱,可使用SPSSAU进行分析,系统会自动生成指标解读报告。
请点击输入图片描述
二、分析思路模板
研究框架是分析的核心,一般可分为非量表和量表问卷,然后再对照着框架进行分析即可。
量表类问卷最大的特点是:非常多的量表题,而且量表题对应着‘变量’或者‘维度’。便于研究‘变量’间的关系情况。以及可以使用信度、效度、因子分析等方法。
非量表题其最大的特点为大部分为单选题、多选题或者排序填空题等,但很少 有出现量表题(是量表题是指类似答项为“非常不同意”,“比较不同意”,“中立”,“比较同意”和 “非常同意”之类的问题)更多是使用基本频数分析和交叉分析等,同时使用图形和表格进行多样化展示。
5.论文中调查问卷的分析需要每一题都分析吗
对于包含量表的问卷,一般应进行信度和效度分析,非量表问卷可以用文字描述,无论何种类型的问卷,都应该在本文中表达出来,以证明数据质量的可靠性。
如果它是一个休闲,通常需要进行预测试验,即发出问卷大约球迷,进行信度和效度分析,和1653年修改或删除项目较低的可靠性和有效。
以促进研究人员进行一定程度的调整的初步问卷形成最终版本,当然正式学习还是要做信度和效度分析。
扩展资料:
注意事项:
问卷作为论文的附件,以及其他附件,如学校出具的介绍信等,不属于Turnitinrules的review。
当然借用别人的风格是可以的,但你必须做出一些调整,否则即使查得很重,别人以后发现还是有麻烦。只要数据和文章的内容不一样
毕业论文为大专以上学历学生的专业集中的科研训练,要求学生在毕业前撰写论文,一般安排在最后一个学年(学期)。
学生需要在老师的指导下选择一个研究主题,撰写并提交一篇论文。目的是培养学生的科研能力,综合运用所学的知识、理论和技能,加强解决实际问题的训练,从整体上考察学生在大学学习中的学术水平。
6.问卷调查,“数据分析”具体指什么
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
扩展资料
数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:
1、探索性数据分析:当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
2、模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
3、推断分析:通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
参考资料来源:百度百科-数据分析
转载请注明出处众文网 » 毕业论文问卷调查数据分析