1.给我一篇关于超声波的论文
摘要]本文主要介绍了超声波的特点,超声波传感器的原理与应用等多个方面。
文中阐述了超声波与可听声波的区别,超声波传感器在医疗,工业生产,液位测量,测距系统等多个领域中得到了广泛的应用。因超声波具有的独特的特性,使得超声波传感器越来越在生产生活中体现了其重要性,具有一定的研究价值。
[关键词]超声波 传感器 疾病诊断 测距系统 液位测量 一、超声波传感器概述 1.超声波 声波是物体机械振动状态的传播形式。超声波是指振动频率大于20000Hz以上的声波,其每秒的振动次数很高,超出了人耳听觉的上限,人们将这种听不见的声波叫做超声波。
超声波是一种在弹性介质中的机械振荡,有两种形式:横向振荡(横波)及纵向振荡(纵波)。在工业中应用主要采用纵向振荡。
超声波可以在气体、液体及固体中传播,其传播速度不同。另外,它也有折射和反射现象,并且在传播过程中有衰减。
超声波在媒质中的反射、折射、衍射、散射等传播规律,与可听声波的规律并没有本质上的区别。与可听声波比较,超声波具有许多奇异特性:传播特性──超声波的衍射本领很差,它在均匀介质中能够定向直线传播,超声波的波长越短,这一特性就越显著。
功率特性──当声音在空气中传播时,推动空气中的微粒往复振动而对微粒做功。在相同强度下,声波的频率越高,它所具有的功率就越大。
由于超声波频率很高,所以超声波与一般声波相比,它的功率是非常大的。空化作用──当超声波在液体中传播时,由于液体微粒的剧烈振动,会在液体内部产生小空洞。
这些小空洞迅速胀大和闭合,会使液体微粒之间发生猛烈的撞击作用,从而产生几千到上万个大气压的压强。微粒间这种剧烈的相互作用,会使液体的温度骤然升高,从而使两种不相溶的液体(如水和油)发生乳化,并且加速溶质的溶解,加速化学反应。
这种由超声波作用在液体中所引起的各种效应称为超声波的空化作用。 超声波的特点:(1)超声波在传播时,方向性强,能量易于集中;(2)超声波能在各种不同媒质中传播,且可传播足够远的距离;(3)超声波与传声媒质的相互作用适中,易于携带有关传声媒质状态的信息(诊断或对传声媒质产生效应)。
2.超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。以超声波作为检测手段,必须产生超声波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。
超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。
压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。
超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。发送器传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器作用是将陶瓷振子的电振动能量转换成超能量并向空中幅射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超进行检测。
控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。二、超声波传感器的应用 1.超声波距离传感器技术的应用 超声波传感器包括三个部分:超声换能器、处理单元和输出级。
首先处理单元对超声换能器加以电压激励,其受激后以脉冲形式发出超声波,接着超声换能器转入接受状态,处理单元对接收到的超声波脉冲进行分析,判断收到的信号是不是所发出的超声波的回声。如果是,就测量超声波的行程时间,根据测量的时间换算为行程,除以2,即为反射超声波的物体距离。
把超声波传感器安装在合适的位置,对准被测物变化方向发射超声波,就可测量物体表面与传感器的距离。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。
超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 2.超声波传感器在医学上的应用 超声波在医学上的应用主要是诊断疾病,它已经成为了临床医学中不可缺少的诊断方法。
超声波诊断的优点是:对受检者无痛苦、无损害、方法简便、显像清晰、诊断的准确率高等。 3.超声波传感器在测量液位的应用 超声波测量液位的基本原理是:由超声探头发出的超声脉冲信号,在气体中传播,遇到空气与液体的界面后被反射,接收到回波信号后计算其超声波往返的传播时间,即可换算出距离或液位高度。
超声波测量方法有很多其它方法不可比拟的优点:(1)无任何机械传动部件,也不接触被测液体,属于非接触式测量,不。
2.超声波加湿器的超声波加湿器原理
超声波加湿器加湿原理:
超声波工业加湿器内部采用世界上最zui先进的雾化技术和集成式雾化组件,所产生的雾粒直径只有1-5μm,颗粒均匀,能长时间悬浮于空气当中,独du创的防止风机溅水设计、出雾口防漏水设计、易清洗设计和缺水保护装置,确保加湿器质量优异,安全可靠。
输出管道根据喷雾量的不同,分为单管路输出PVC管道和双管路输出PVC管道,可按用户需要加湿的场所合理布置管线,均匀分布出雾口,管线间连接需密封。加湿器分为移动式及外墙悬挂式两种设计,设备整体采用不锈钢箱体,外形美观、实用、运行费用低。
扩展资料:
超声波是一种频率高于20000赫兹的声波,它的方向性好,穿透能力强,易于获得较集中的声能,在水中传播距离远,可用于测距、测速、清洗、焊接、碎石、杀菌消毒等。在医学、军事、工业、农业上有很多的应用。超声波因其频率下限大于人的听觉上限而得名。
科学家们将每秒钟振动的次数称为声音的频率,它的单位是赫兹(Hz)。我们人类耳朵能听到的声波频率为20Hz-20000Hz。我们把频率高于20000赫兹的声波称为“超声波”。通常用于医学诊断的超声波频率为1兆赫兹-30兆赫兹。
理论研究表明,在振幅相同的条件下,一个物体振动的能量与振动频率成正比,超声波在介质中传播时,介质质点振动的频率很高,因而能量很大.在中国北方干燥的冬季,如果把超声波通入水罐中,剧烈的振动会使罐中的水破碎成许多小雾滴,再用小风扇把雾滴吹入室内,就可以增加室内空气湿度,这就是超声波加湿器的原理。如咽喉炎、气管炎等疾病,很难利用血流使药物到达患病的部位,利用加湿器的原理,把药液雾化,让病人吸入,能够提高疗效。
3.超声波加湿器的特点
同其它类型加湿设备相比,超声波工业用加湿器具有下列特点:
1、加湿效率高(接近100%),加湿强度大,产生的雾粒小而均匀,单位时间内可迅速达到要求的相对湿度,节约水源;2、单位加湿量的能耗指标低,超声波加湿器的耗能量只有0.05 kW/(kg.h),仅相当于其它加湿方式的1/15~ 1/10,日运行费用低;
3、体积小,可根据现场条件单独自成系统,既适合新建厂房的配套安装,又可在不破坏原有设备的基础上,对旧厂房进行改造升级;
4、加湿均匀,可迅速及大面积地解决工业生产中的实际问题,例如纺织生产中的飞花、断头、静电、毛糙不平和纤维脆弱等问题;
5、雾化组件采用集成式雾化机芯,全密封式结构设计达到了防水的目的,并且使雾化片更换、维护可在现场立即解决,完全杜绝了早期超声波加湿系统易损坏、寿命短和维修繁琐等问题;
6、集成雾化机芯自带过水保护装置,可有效地保证雾化机芯在水位过低时自动停止工作,无需另配设备,节约了成本;
7、控制方式灵活、方便,有三种控制方式可供选择:开关控制、时序控制和湿度自动控制。在选取时可根据现场环境和人员安排进行灵活的选择、搭配;
8、湿度自动控制的加湿机配备法国进口湿度传感器, 灵敏度高、反应迅速, 可完全实现无人员现场操作;
9、设备采用不锈钢箱体,外观美观大方,耐腐蚀,寿命长;
10、设备同时具有固定支架式和可移动式两种安装方式,并可通过管道连接安装在远离加湿场所的区域,既方便了设备安装,又提高了空间的使用效率;
11、设备通过国家电器安全使用检测,配备高性能自动上水电磁阀、溢水口和泄水口,使用简便、安全可靠;
12、设备整体设计经过反复试验及多年实际检测,结构紧凑,搭配合理,无大功率电机,不是由纯粹的机械能驱动加湿,所以工作时无噪音,对液体的雾化效果高。
超声波加湿器采用多重保护,如电流过载保护、防干烧保护、水温保护等,能保证机器长时间连续稳定运行。整机采用不锈钢材质喷塑而成,无水锈;制雾机芯采用集成式制雾模块,主要元器件采用进口产品,保证了加湿机的使用寿命。加湿速度快,加湿机从静止状态到产生额定加湿量,仅需1秒钟。
4.超声加湿器是利用声波具有很强的什么能
超声波能量传递,可以分3部分,气体、液体、固体。超声波在气体中传递的效率并不高,速度很慢而且频率越高损耗越大,典型设备是超声波测距仪,进口好些的也只能测15米以内的,国产的3-8米,10米能测稳定的已经和不错了;超声波在水中可以传递的很快、传的夜很远,但在水温不均的情况下,例如海洋中的洋流,超声波的声速、方向会受到很复杂的影响,比如拐弯(其实空气中超声波也会拐弯,只是空气流通快超声波传的也不远,所以不易察觉)。典型设备是潜艇声纳和超声波探鱼仪器;超声波在固体中的传播速度受不同介质的影响较大,典型的设备如超声波探伤仪。
我认为超声波加湿器的原理不是利用传递能量,而是利用水在超声波探头的高频震荡下产生空化作用,一部分水被雾化而产生加湿气体。
转载请注明出处众文网 » 超声波加湿器毕业论文(给我一篇关于超声波的论文)