1.怎么用spss因子分析法
因子分析
1输入数据。
2点Analyze 下拉菜单,选Data Reduction 下的Factor 。
3打开Factor Analysis后,将数据变量逐个选中进入Variables 对话框中。
4单击主对话框中的Descriptive按扭,打开Factor Analysis: Descriptives子对话框,在Statistics栏中选择Univariate Descriptives项要求输出个变量的均值与标准差,在Correlation Matrix 栏内选择Coefficients项,要求计算相关系数矩阵,单击Continue按钮返回Factor Analysis主对话框。
5单击主对话框中的Extraction 按钮,打开如下图所示的Factor Analysis: Extraction 子对话框。在Method列表中选择默认因子抽取方法——Principal Components,在Analyze 栏中选择默认的Correlation Matrix 项要求从相关系数矩阵出发求解主成分,在Exact 栏中选择Number of Factors;6, 要求显示所有主成分的得分和所能解释的方差。单击Continue按钮返回Factor Analysis主对话框。
6单击主对话框中的OK 按钮,输出结果。
统计专业研究生工作室原创,请勿复杂粘贴
2.因子分析法的分析步骤
因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。
(i)因子分析常常有以下四个基本步骤:
⑴确认待分析的原变量是否适合作因子分析。
⑵构造因子变量。
⑶利用旋转方法使因子变量更具有可解释性。
⑷计算因子变量得分。
(ii)因子分析的计算过程:
⑴将原始数据标准化,以消除变量间在数量级和量纲上的不同。
⑵求标准化数据的相关矩阵;
⑶求相关矩阵的特征值和特征向量;
⑷计算方差贡献率与累积方差贡献率;
⑸确定因子:
设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标;
⑹因子旋转:
若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。
⑺用原指标的线性组合来求各因子得分:
采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。
⑻综合得分
以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。
F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )
此处wi为旋转前或旋转后因子的方差贡献率。
⑼得分排序:利用综合得分可以得到得分名次。
在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题:
· 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。
· 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。
· 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。
如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。
3.请问谁有关于统计的论文,具体要求是使用多元统计分析方法分析数
1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。
它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。
因子分析的基本思想: 把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。 (2)F = (F1,F2,…,Fm)¢ (m。
4.因子分析后,如何分析各因子对目标变量的贡献
不知道对于你的因子分析是分析什么东西的对于因子分析,如果不用逐步回归法的话,主成分回归法也可以,这样既可以确定了你的因子数目,还可以看出各个因子之间的重要性,如果权重大的话,则这个变量贡献就大……对于自变量对于因变量的贡献大小可以采用F检验来进行……对于第二个问题,这个也是化学计量学的一个瓶颈问题,采用数学方法多大程度上表现了我的这个体系的真实情景,研究到现在还没有完全解决。
其实你采用了各种因子分析法之后,还是可以在一定程度上代表了我的这个体系,究竟在多大程度上,就不好说了,需要实验来证明。目前用的比较多的方法就是各种因子分析法,这些因子分析方法还是有一定置信水平的,所以可以采用……论文中应该如何规避,呵呵,这个比较难以说清,应该根据你的实际情况来,还有就是看看你算出来的东西和你实验结果有多大的差距,如果差距很小,那说明你的这个体系比较好,可以采用,这个就是一般所说的残差,论文中需要提供这些数据来……第三个问题我在上面其实已经回答了一部分了,数学体系还是完全代替不了真实体系,但是因子分析得到的结果可以代表你这个体系的主要部分,即主要的影响因素有哪些,对体系有主要贡献的变量有哪些,这些变量其实就是你的实验中的各个因素。
既然得到了具有主要影响的因素,那我们在实验过程中就可以根据这些因素来最优化我们的实验条件,从这个方面来讲,还是有很大的意义的…… 建议楼主看下因子分析这本书,讲得很详细……特别是美国的化学计量学家B.R.Kowalski写的因子分析绝对经典,可以弄到的话建议认真看下。以上是我的个人见解,如有不妥,敬请指正……。
转载请注明出处众文网 » 因子分析法毕业论文(怎么用spss因子分析法)