1.典型车型的电控电力转向系统的论文怎么写~~急啊
2006年第1期 (总第174期) 农业装备与车辆工程 AGRICULTURAL EQUIPMENT&VEHICLE ENGINEERING No.1 2006 (Totally 174) 汽车线控转向系统综述 于蕾艳林逸李玉芳 (北京理工大学机械与车辆工程学院,北京100081) 摘要:线控转向(Steer—By—W ire)~.-种先进的转向技术。
由于取消了方向盘和车轮的机械连接,可以任意设计传 动比,对转向轮进行主动控制,并对随车速变化的参数进行补偿,实现理想的转向特性,提高操纵稳定性。综述了国 内外线控转向的研究发展,介绍了线控转向的结构、关键技术、研究方法,并提出了线控转向的发展趋势。
关键词:线控转向;操纵稳定性 中圈分类号:U463.4 文献标识码:A 文章编号:1673—3142(2006)01—0032—06 Summarization of Automobile Steer——by..W ire System Yu Leiyan Lin Yi Li Yufang (School of Mechanism and Vehicle Engineering,Beijing Institute of Technology,Beijing 100081,China) Abstract:Steer-By-Wire is an advanced steering technology.As the mechanical connections between steering wheel and turning wheels are eliminated,the drive ratio can be designed according to needs,the turning wheels can be controlled actively compensating the parameters with vehicle speed variation,thus ideal steering characteristics is realized and handling stability is improved.Research development of home and abroad of Steer-by-Wire technology is summarized,structure,key technologies and study methods of Steer-by-Wire is introduced and developing trend of Steer-by-Wire is presented. Key Words:Steer-by-Wire(sBw)system;handling stability 1 前言 汽车发展的趋势是安全、节能、环保。转向系统 是关系主动安全的重要系统,其操纵稳定性好坏对 汽车性能影响很大。
操纵性是汽车准确跟踪驾驶员 意图行驶;稳定性是要求危险工况(高速行驶,侧向 加速度大,离心力大,超过轮胎侧偏力而发生大的侧 滑;小附着系数路面的侧滑;对开路面上轮胎左右侧 偏力不相等、侧向风引起的横摆)下汽车仍稳定行 驶。为提高操纵稳定性,出现了ESP(电子稳定程 序)、主动转向、4WS(4轮转向)等。
ESP判断产生不 足转向或过度转向时相应在后轮、前轮产生制动力, 产生横摆力矩即纠偏力矩。四轮转向的后轮也参与 转向。
低速时,后轮与前轮反向转向,减小转弯半径, 提高机动灵活性。高速时,后轮与前轮同向转向,提 高汽车的稳定性。
其控制目标是质心侧偏角为零。 然而这些汽车转向系统却处于机械传动阶段,由于 其转向传动比固定,汽车的转向响应特性随车速而 收稿日期:2oo5—10—24 作者简介:于蕾艳(1980-)。
女,北京理工大学车辆工程系博士,主要 从事汽车电子、线控转向方面的研究。 ·32· 变化。
因此驾驶员就必须提前针对汽车转向特性的 幅值和相位变化进行一定的操作补偿,从而控制汽 车按其意愿行驶。 如果能够将驾驶员的转向操作与转向车轮之间 通过信号及控制器连接起来,驾驶员的转向操作仅 仅是向车辆输入自己的驾驶指令,由控制器根据驾 驶员指令、当前车辆状态和路面状况确定合理的前 轮转角,从而实现转向系统的智能控制,必将对车辆 操纵稳定性带来很大的提高,降低驾驶员的操纵负 担,改善人一车闭环系统性能。
因而线控转向系统 (Steering-By-Wire System,简称SBW)应运而生。 SBW 是X-By-Wire的一种。
X—By—W 的全称是 “没有机械和液力后备系统的安全相关的容错系 统”。“x”表示任何与安全相关的操作,包括转向、制 动等等。
“By—Wire”表示X—By—wire是一个电子系 统。在X—By—Wire系统中,所有元件的控制和通讯 都通过电子来实现。
x—By—Wire系统是没有机械和 液力后备系统的,传统的机械和液力系统由于结构 的原因(间隙、运动惯量等),从控制指令发出到指令 执行会有一定的延迟,这在极限情况下是不能允许 维普资讯。
3.汽车线控转向系统的原理
汽车线控转向系统由方向盘总成、转向执行总成和主控制器(ECU)三个主要部分以及自动防故障系统、电源等辅助系统组成。
汽车线控转向系统的工作原理:当方向盘转动时,方向盘转角传感器将测量到的驾驶员转向意图转变成数字信号输入到转向控制器ECU,ECU对采集的信号进行分析处理,判别汽车的运动状态, 向转向电机和方向盘力矩电机发送命令,控制转向电机转到要求的前轮转角,完成驾驶员的转向意图,实现车轮的转向,同时控制力矩电机旋转,产生方向盘回正力矩, 给驾驶员提供相应的路感信息。
它的特点:
(1)提高汽车安全性能。由于线控转向系统取消了转向柱等机械连接,转向系统强度降低,有利于保护驾驶员的安全。
(2)改善驾驶特性,增强操纵性。低速行驶时,转向比率低,可以减少转弯或停车时转向盘转动的角度;高速行驶时,转向比率变大,获得更好的直线行驶条件。
(3)增强汽车舒适性。由于消除了机械结构连接,地面的不平和转向轮的不平衡不会传递到转向轴上,并且增大了驾驶员的腿部活动空间。
4.如题典型汽车电动式电控动力转向系统的分析的论文
客车车身骨架结构有限元分析与研究 重型特种车车架强度分析及其轻量化问题研究基于三维CAD和有限元分析的扬子福铃皮卡车架的结构分析汽车车身CAN总线控制系统应用与研究基于视觉导航的智能车辆自主行驶研究 后桥主减速器装配的关键测量技术 车载多媒体视音系统的设计与研究 基于CAN总线的车身控制模块 驾驶员—四轮转向汽车闭环系统运动稳定性研究 汽车动力总成悬置系统隔振性能分析与优化设计 汽车测试系统的虚拟仪器研究 汽车横侧主动安全性仿真研究 基于虚拟仪器的智能化机动车综合性能检测系统的研究CNG加气站技术经济性及子站压缩机气阀工作过程研究 非线性座椅悬架曲面板设计及理论分析 控制网络技术在轮胎胎面生产监控系统中的研究与应用 基于输出反馈的汽车电动助力转向与主动悬架系统集成控制研究 客车空气弹簧悬架的初步研究 汽车电控系统在线故障诊断方法的研究 汽车车身造型设计方法的研究 汽车高速轮胎试验机液压伺服加载系统研究 混合动力电动汽车控制策略的仿真研究及优化 基于虚拟样机技术的汽车整车操纵稳定性研究 基于虚拟样机技术的汽车操纵稳定性仿真研究 CFD技术在催化转化器上的应用研究 辅助动力电动汽车整车匹配及电机控制系统研究汽车轮胎滚动半径试验研究 基于知识的轿车视野校核系统研究与开发 YD01型轿车车身结构分析研究 脉冲数互比法汽车轮胎气压异常报警模式研究 轿车转向节成形新工艺研究 轿车铝合金轮毂台架试验的有限元数值模拟 多传感器信息融合在车辆定位与导航中的应用 车辆悬架系统用磁流变阻尼器的设计方法研究 汽车安全玻璃副像偏移电子检测系统 车载电源控制系统研究 汽车动力性计算机辅助计算 同步器操作性能与寿命测试系统的研究 基于网格的车身冲压件模具设计平台若干关键技术研究 基于DSP控制的电动车的两轮驱动研究 混合动力客车整车控制策略及总成参数匹配研究 半主动空气弹簧悬架智能控制算法的仿真及试验研究 分岔理论在汽车转向轮摆振机理及其控制策略研究中的应用 重型载货汽车底盘性能设计参数控制研究 基于模糊控制的半主动空气悬架系统的仿真与试验研究 双质量飞轮的汽车动力传动系扭振特性分析 汽车列车运动轨迹跟踪控制仿真研究 车牌半成品自动生产线的铝带烘干系统能量最优控制研究 汽车制动性能检测系统研究 新型汽车主动悬架系统及其鲁棒控制研究基于SOPC技术的汽车制动性能检测 汽车ABS仿真检测建模与模型中相关参数影响的研究 基于GSM短信息的GPS汽车定位与防盗系统的研究 汽车综合性能自动测控系统研究 汽车ABS仿真检测平台的研究 汽车电源系统的分析及仿真 车辆行驶记录仪研究 汽车废气能量回收装置的研究 汽车注塑件气辅成型关键技术的研究 台架试验中车轮位姿视觉识别算法的研究 基于模糊逻辑的汽车麦弗逊悬架的动力学仿真 复数车辆超车过程中的气动干扰特性研究 汽车试验台用驾驶机械手开发研究 轿车驱动轴等速万向节结构强度的有限元分析 发动机输出扭矩与悬置力的非稳态仿真 混合动力汽车动力总成故障诊断的研究 汽车TCS轮速识别与电子节气门控制 8X8轮式越野车独立悬架和整车性能仿真分析与优化 电动助力转向系统助力特性和控制算法研究 基于ADAMS的油气消扭悬架系统仿真分析 重型载货汽车车架结构的有限元仿真及优化 轿车白车身撞压变形特性对乘员伤害指标影响的仿真分析中国首台汽车性能模拟器动力学模型的改进 侧风对轿车气动特性影响的数值模拟 电子节气门控制系统的开发研究 混合动力公交中巴动力源的建模和控制策略研究车辆驾驶机械手的研制与伺服运动控制研究 线控转向系统参数与整车匹配设计的研究 主动控制式电磁液压悬置隔振特性研究 CVT车辆中发动机与液力变矩器共同工作性能的研究 汽车制动专家系统知识库的建立和人机界面设计 汽车制动试验台数据采集、处理系统研制 汽车零部件网络化制造系统环境下企业应用集成架构及技术研究 汽车驱动桥壳的有限元建模与分析 总线技术在商用车上的应用研究 汽车ABS测试系统的开发与试验研究 燃料电池混合动力电动车仿真分析与控制策略研究基于LIN总线技术的汽车车门系统的开发空气悬架控制系统仿真及试验研究 双轴并联混合动力汽车的实时仿真技术研究 时域内平衡悬架牵引车行驶平顺性建模仿真及试验研究 混合动力城市客车正向建模及仿真软件研究 混合动力汽车复式制动系统的设计与性能仿真 发动机故障异响信号分离方法研究 支持汽车电子的嵌入式软件编程接口 基于六自由度的汽车驾驶虚拟现实系统的开发 用于汽车制动力分配的数字电液比例系统 汽车车轮定位检测设备微机联网系统的研究与开发混合动力城市客车CAN总线仪表的研制 混合动力电动汽车ISG系统模型化与控制算法研究 车辆转向梯形及发动机试验数据优化拟合的研究基于数字技术的无级变速器电液控制系统研究 4*2中重型汽车驱动防滑硬件在环仿真及道路试验研究ABS&TCS控制系统的控制算法研究与仿真分析基于仿真环境驾驶员临界反应能力的研究 汽车TCS系统建模及控制逻辑研究 机械惯量电模拟方法在汽车ABS检测中的应用研究 基于电磁滑差原理的可。
5.汽车线控转向系统技术的工作原理组成功能介绍
你好根据你的描述,汽车线控转向技术取消了方向盘与转向轮之间的传统机械连接,摆脱了传统转向系统限制。线控转向技术能够通过数据总线传递信号,并从转向控制系统中获取反馈命令。
由于去除了转向柱等机械连接,线控转向技术能够大幅提高汽车安全驾驶性能,避免在交通事故中转向柱对驾驶员造成伤害。此外,该技术能够减少过弯或停车时方向盘转动的角度,并获得更好的直线行驶体验。在行驶过程中,驾驶员的道路体验通过模拟生成,方向盘向驾驶员提供的信息更加精确,对于行驶路况也能够进行有效反馈。
汽车线控转向系统的结构和基本原理
1.汽车线控转向系统的结构
汽车线控转向系统由方向盘总成、转向执行总成和主控制器(ECU)三个主要部分以及自动故障处理系统、电源等辅助系统组成,所示。
汽车线控转向系统结构
方向盘总成的主要功能是将驾驶员的转向意图(通过测量方向盘转角)转换成数字信号,并传递给主控制器;同时接受主控制器送来的力矩信号,产生方向盘回正力矩,以提供给驾驶员相应的路感信息。方向盘总成包括方向盘、方向盘转角传感器、力矩传感器、方向盘回正力矩电机。
转向执行总成的功能是接受主控制器的命令,通过转向电机控制器控制转向车轮转动,实现驾驶员的转向意图。转向执行总成包括前轮转角传感器、转向执行电机、转向电机控制器和前轮转向组件等组成。
主控制器(ECU)的功能是对采集的信号进行分析处理,判别汽车的运动状态,向方向盘回正力电机和转向电机发送指令,控制两个电机的工作,保证各种工况下都具有理想的车辆响应,以减少驾驶员对汽车转向特性随车速变化的补偿任务,减轻驾驶员负担。同时控制器还可以对驾驶员的操作指令进行识别,判定在当前状态下驾驶员的转向操作是否合理。当汽车处于非稳定状态或驾驶员发出错误指令时线控转向系统会将驾驶员错误的转向操作屏蔽,而自动进行稳定控制,使汽车尽快地恢复到稳定状态。
自动故障处理系统是线控转向系的重要模块。它包括一系列的监控和实施算法,针对不同的故障形式和故障等级做出相应的处理,以求最大限度地保持汽车的正常行驶。作为应用最广泛的交通工具之一,汽车的安全性是必须首先考虑的因素,是一切研究的基础,因而故障的自动检测和自动处理是线控转向系统最重要的组成系统之一。它采用严密的故障检测和处理逻辑,以更大地提高汽车安全性能。
电源系统承担着控制器、两个执行电机以及其他车用电器的供电任务,希望我的回答对你有帮助,望采纳,谢谢!!
6.如题典型汽车电动式电控动力转向系统的分析的论文
客车车身骨架结构有限元分析与研究 重型特种车车架强度分析及其轻量化问题研究 基于三维CAD和有限元分析的扬子福铃皮卡车架的结构分析 汽车车身CAN总线控制系统应用与研究 基于视觉导航的智能车辆自主行驶研究 后桥主减速器装配的关键测量技术 车载多媒体视音系统的设计与研究 基于CAN总线的车身控制模块 驾驶员—四轮转向汽车闭环系统运动稳定性研究 汽车动力总成悬置系统隔振性能分析与优化设计 汽车测试系统的虚拟仪器研究 汽车横侧主动安全性仿真研究 基于虚拟仪器的智能化机动车综合性能检测系统的研究 CNG加气站技术经济性及子站压缩机气阀工作过程研究 非线性座椅悬架曲面板设计及理论分析 控制网络技术在轮胎胎面生产监控系统中的研究与应用 基于输出反馈的汽车电动助力转向与主动悬架系统集成控制研究 客车空气弹簧悬架的初步研究 汽车电控系统在线故障诊断方法的研究 汽车车身造型设计方法的研究 汽车高速轮胎试验机液压伺服加载系统研究 混合动力电动汽车控制策略的仿真研究及优化 基于虚拟样机技术的汽车整车操纵稳定性研究 基于虚拟样机技术的汽车操纵稳定性仿真研究 CFD技术在催化转化器上的应用研究 辅助动力电动汽车整车匹配及电机控制系统研究 汽车轮胎滚动半径试验研究 基于知识的轿车视野校核系统研究与开发 YD01型轿车车身结构分析研究 脉冲数互比法汽车轮胎气压异常报警模式研究 轿车转向节成形新工艺研究 轿车铝合金轮毂台架试验的有限元数值模拟 多传感器信息融合在车辆定位与导航中的应用 车辆悬架系统用磁流变阻尼器的设计方法研究 汽车安全玻璃副像偏移电子检测系统 车载电源控制系统研究 汽车动力性计算机辅助计算 同步器操作性能与寿命测试系统的研究 基于网格的车身冲压件模具设计平台若干关键技术研究 基于DSP控制的电动车的两轮驱动研究 混合动力客车整车控制策略及总成参数匹配研究 半主动空气弹簧悬架智能控制算法的仿真及试验研究 分岔理论在汽车转向轮摆振机理及其控制策略研究中的应用 重型载货汽车底盘性能设计参数控制研究 基于模糊控制的半主动空气悬架系统的仿真与试验研究 双质量飞轮的汽车动力传动系扭振特性分析 汽车列车运动轨迹跟踪控制仿真研究 车牌半成品自动生产线的铝带烘干系统能量最优控制研究 汽车制动性能检测系统研究 新型汽车主动悬架系统及其鲁棒控制研究 基于SOPC技术的汽车制动性能检测 汽车ABS仿真检测建模与模型中相关参数影响的研究 基于GSM短信息的GPS汽车定位与防盗系统的研究 汽车综合性能自动测控系统研究 汽车ABS仿真检测平台的研究 汽车电源系统的分析及仿真 车辆行驶记录仪研究 汽车废气能量回收装置的研究 汽车注塑件气辅成型关键技术的研究 台架试验中车轮位姿视觉识别算法的研究 基于模糊逻辑的汽车麦弗逊悬架的动力学仿真 复数车辆超车过程中的气动干扰特性研究 汽车试验台用驾驶机械手开发研究 轿车驱动轴等速万向节结构强度的有限元分析 发动机输出扭矩与悬置力的非稳态仿真 混合动力汽车动力总成故障诊断的研究 汽车TCS轮速识别与电子节气门控制 8X8轮式越野车独立悬架和整车性能仿真分析与优化 电动助力转向系统助力特性和控制算法研究 基于ADAMS的油气消扭悬架系统仿真分析 重型载货汽车车架结构的有限元仿真及优化 轿车白车身撞压变形特性对乘员伤害指标影响的仿真分析 中国首台汽车性能模拟器动力学模型的改进 侧风对轿车气动特性影响的数值模拟 电子节气门控制系统的开发研究 混合动力公交中巴动力源的建模和控制策略研究 车辆驾驶机械手的研制与伺服运动控制研究 线控转向系统参数与整车匹配设计的研究 主动控制式电磁液压悬置隔振特性研究 CVT车辆中发动机与液力变矩器共同工作性能的研究 汽车制动专家系统知识库的建立和人机界面设计 汽车制动试验台数据采集、处理系统研制 汽车零部件网络化制造系统环境下企业应用集成架构及技术研究 汽车驱动桥壳的有限元建模与分析 总线技术在商用车上的应用研究 汽车ABS测试系统的开发与试验研究 燃料电池混合动力电动车仿真分析与控制策略研究 基于LIN总线技术的汽车车门系统的开发 空气悬架控制系统仿真及试验研究 双轴并联混合动力汽车的实时仿真技术研究 时域内平衡悬架牵引车行驶平顺性建模仿真及试验研究 混合动力城市客车正向建模及仿真软件研究 混合动力汽车复式制动系统的设计与性能仿真 发动机故障异响信号分离方法研究 支持汽车电子的嵌入式软件编程接口 基于六自由度的汽车驾驶虚拟现实系统的开发 用于汽车制动力分配的数字电液比例系统 汽车车轮定位检测设备微机联网系统的研究与开发 混合动力城市客车CAN总线仪表的研制 混合动力电动汽车ISG系统模型化与控制算法研究 车辆转向梯形及发动机试验数据优化拟合的研究 基于数字技术的无级变速器电液控制系统研究 4*2中重型汽车驱动防滑硬件在环仿真及道路试验研究 ABS&TCS控制系统的控制算法研究与仿真分析 基于仿真环境驾驶员临界反应能力的研究 汽车TCS系统建模及控制逻辑研究 机械惯量电模拟方法在汽车ABS检测中的应用研究 基于电。
7.AGV车辆转向系统的设计 毕业设计论文 怎么做
佳顺伟业AGV车辆转向的调整:由于AGV小车是无人驾驶的,因此必须有一个车辆调度系统。一共有五种方式:
1、车载调度
2、车外调度
3、远程终点
4、中央终点
5、复合调度
其中,最广泛应用的是车载调度。这种方式中,每辆车有一个控制面板,操作员可以用这个控制面板编程,确定每辆车停在路径的什么位置,由于在每个停止位车辆的动作可能不一样,控制面板也可以对车辆停下来之后的动作进行编程。因此,车载编程是比较灵活的调度方式。
当从小车上向停止位置上卸货是自动进行的时候,用离车调度就比较有效。离车调度系统有简单也有复杂的。最简单的系统,只是一个的按钮,按下按钮代表到另外一个位置,操作员只要在要停的按钮上按一下就可以了。复杂的系统可能有一个面板,操作员可以定义小车到了下一个点后,然后还可以去哪里。
以上两种方式都是外围控制。现在的趋势有向中央控制的方向发展。设立一个终点站,所有的AGV从这里控制,操作员有一个全部的AGV车辆的位置图,并且可以指挥所有的车辆到预定地点。这时,因为是由操作员控制车辆的调度,因此称为手动中央控制。
如果中央控制系统由计算机来进行,就叫做中央计算机控制,这是AGV系统的最高级的车辆调度方式。在这种方式中,AGV车按照计算机的程序沿导引路径行驶并做适当的停止,同时在停止时按照事先的编程完成预定的动作。一旦程序给定,就不需要人员的介入,操作员无需坐在显示器前观察车辆。这种方式今后将会越来越普及。
8.汽车转向系统的评估鉴定的论文
转向系统
(1)的基本成分主要是由方向盘的转向机构,转向轴,转向管柱等组成。
(2)转向的转向臂的转动方向盘成齿条轴的直线往复运动或摆动,并且转向力放大机构。转向一般是固定在车内或车车身框架,通过改变公意的传输方向转向的转向力之后。
(3)转向机构的转向输出力和运动到车轮(转向节),并在左,右轮偏转机构之间有一定的关系。
不同能量的转向,转向系统可分为机械转向系统和动力转向系统分为两类。
关于汽车转向系统的当前配置和I可以看到数据可分为三大类:(1)一个机械的液压动力转向系统; (2)电子液压助力转向系统; (3)除了电动动力转向系统。
的机械液压助力转向系统
1,机械式液压助力转向系统一般由液压泵,油管,压力流量控制阀,V型皮带,坦克和其他成员。
2,无论汽车转向系统,该系统应该工作,但是当大转向较低速度,泵的输出需要更多的权力来得到更大的提升。因此,也在一定程度上造成资源的浪费。你可以回想一下:开这车,尤其是在低速转弯时,感觉比较重的方向,发动机也比较费力。同时,由于液压泵的压力,是比较容易损坏电源系统。
此外,机械和液压动力转向系统包括一个液压泵和管路和气缸组件,以维持该压力,而不管是否在动力转向系统的始终处于工作状态,能耗高,这是消耗的原因之一资源驻留。
一般经济型轿车使用机械液压助力系统等等。
二,电子液压助力转向系统
1,主要成分:储油罐,助力转向控制单元,电动泵,转向器,动力转向传感器,包括助力转向控制单元和电动泵是一个整体的结构。
2,工作原理:电子液压助力转向系统,克服了传统的液压助力转向系统的缺点。它使用的液压泵不再直接由发动机驱动的皮带,而不是使用一个电动泵,其状态的所有的工作是由电子控制单元根据所述车辆的行驶速度进行,从所计算出的转向角信号理想状态。简单地说,在大的转向在低速时,电子控制单元驱动的电子泵具有更高的功率输出以高速,驾驶员打努力的方向;车在高速行驶时,驱动电子泵以较低的速度操作液压控制单元不影响需要打转向速度,同时节省了发动机功率的一部分。
三,电动助力转向系统(EPS)的
1,英文全称是电子助力转向系统,简称EPS,它利用电动机产生的动力协助驾车人士动力转向。 EPS组合物,虽然不同的部件的结构是不一样的汽车,但一般是相似的。通常由扭矩(转向)传感器,电子控制单元,电动机,减速机,机械转向器,和动物细胞提供构成功率。
2,工作原理:汽车转向转矩(转向)传感器会“感觉”的时刻的方向盘和建议的,这些信号将会经由数据发送至电子控制单元的旋转方向总线,电子控制单元将基于所述传输扭矩,以便在所述数据信号,操作指令到电机控制器,其将基于电动机的输出的对应的大小的特定需求的方向转移旋转扭矩,从而产生动力转向。如果不转,那么这台系统不会进入待机(休眠)状态等待调用工作。由于电动助力转向的电动操作的特点,你会觉得开这样的车,更好的方向感,而且在高速更稳定,方向是不是说轻浮。另外,因为当它不,因此,多少能量被保存度转向不工作。一般情况下,使用这种高档轿车的动力转向系统更多。
9.什么是线控转向技术呢
未来新型智能汽车机器人还将采用线控转向技术。
什么是线控转向技术呢?那就是由驾驶者用线传电控技术控制车轮的转向和速度,而取代了传统的机械齿轮传动,由此达到驱动、制动一体化,这种未来新型智能汽车机器人所具有的灵敏度比传统汽车更高,从而让驾驶更为安全3汽车机器人不但有程序化的判断能力,而且不会因为驾驶者方向盘转动幅度过大造成行驶方向上的偏差,这种技术的应用可以从一个新的角度来控制醉酒驾车而产生的危险系数,由于现阶段酒后驾车在被严格控制的情况下还会陆续地出现,所以,未来新型智能汽车机器人就是驾驶员最好的助手,它甚至可以自选路线,根据红外线探测道路实际情况,将醉的一塌糊涂的驾驶员送回计算机程序设定好的目的地,人们期待着这样的新型智能汽车机器人的诞生,到时,就不会由于酒后驾车而发生车祸了。
转载请注明出处众文网 » 线控转向系统毕业论文(典型车型的电控电力转向系统的论文怎么写~~急啊)